ACYCLICITY OF BP-RELATED HOMOLOGIES AND COHOMOLOGIES

Dedicated to Professor Itiro Tamura on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received October 25, 1984)

Introduction

BP is the Brown-Peterson spectrum at a fixed prime p. This spectrum is an associative and commutative ring spectrum whose homotopy is $BP_*=Z_{(p)}[v_1, \dots, v_n, \dots]$. For each $n \ge 0$ there are associative BP-module spectra P(n), BP < n >, k(n), L_nBP , M_nBP and N_nBP . If E is an associative BP-module spectrum, then we can form a weak associative BP-module spectrum $v_n^{-1}E$. When E=P(n), BP < n > or k(n), $v_n^{-1}E$ is written B(n), E(n) or E(n) respectively.

For a CW-spectrum E we denote by $\langle E \rangle$ the Bousfield class of E [3]. Thus it is the equivalence class under the equivalence relation: $E \sim F$ when $E_*X = 0$ if and only if $F_*X = 0$. In [13] and [14] Ravenel has studied the Bousfield classes of the above BP-related spectra.

Theorem 0.1 ([13, Theorem 2.1] and [14, Lemma 3.1]).

- i) $\langle B(n) \rangle = \langle K(n) \rangle = \langle M_n BP \rangle$,
- ii) $\langle v_n^{-1}BP \rangle = \langle E(n) \rangle = \bigvee_{0 \le i \le n} \langle K(i) \rangle = \langle L_nBP \rangle$,
- iii) $\langle P(n) \rangle = \langle K(n) \rangle^{\vee} \langle P(n+1) \rangle = \langle N_n BP \rangle$,
- iv) $\langle k(n) \rangle = \langle K(n) \rangle^{\vee} \langle HZ/p \rangle$, and
- v) $\langle BP\langle n\rangle\rangle = \langle E(n)\rangle^{\vee}\langle HZ/p\rangle$.

For a CW-spectrum E we denote by $\langle E \rangle^*$ the cohomological Bousfield class of E. Thus $\langle E \rangle^* = \langle F \rangle^*$ when $E^*X = 0$ if and only if $F^*X = 0$. Given a p-local CW-spectrum E there exists a p-local CW-spectrum ∇E related by a universal coefficient sequence

$$0 \to \operatorname{Ext}(E_{*-1}X,\,Z_{(p)}) \to \nabla E^*X \to \operatorname{Hom}(E_*X,\,Z_{(p)}) \to 0$$

(see [5] or [16]). By using this sequence we can show that $\langle \nabla E \rangle^* = \langle E \rangle$, and moreover $\langle E \rangle^* = \langle \nabla E \rangle$ if E is of finite type. The BP-module spectrum P(n), $BP\langle n \rangle$, k(n) or K(n) is of finite type, but $v_n^{-1}BP$, B(n), E(n), L_nBP , M_nBP or N_nBP is not of finite type. Nevertheless we obtain

Theorem 0.2. i)
$$\langle B(n) \rangle^* = \langle \nabla B(n) \rangle = \langle K(n) \rangle^* = \langle \nabla K(n) \rangle = \langle K(n) \rangle$$
,