LINEARLY COMPACT MODULES OVER HNP RINGS

Dedicated to Professor Hirosi Nagao for his 60th birthday

HIDETOSHI MARUBAYASHI

(Received May 4, 1984)

Let R be a hereditary noetherian prime ring (an HNP ring for short) and let F be a non-trivial right Gabriel topology on R, i.e., F consists of essential right ideals of R (see §1 of [9]). Then R is a topological ring with elements of F as a fundamental system of neighborhoods of 0. Let M be a topological right R-module with a fundamental system of neighborhoods of 0 consisting of submodules. Then M is called F-linearly compact (F-l.c. for short) if

(i) it is Hausdorff,

(ii) if every finite subset of the set of congruences $x \equiv m_{\alpha} \pmod{N_{\alpha}}$, where N_{α} are closed submodules of M, has a solution in M, then the entire set of the congruences has a solution in M.

This paper is concerned with F-l.c. modules over HNP rings in the case F is special. Let A be a maximal invertible ideal of R and let F_A be the right Gabriel topology consisting of all right ideals containing some power of A. Then we give, in §2, a complete algebraic structure of F_A -l.c. modules by using Kaplansky's duality theorem and basic submodules. From this result we get: " F_A -l.c. modules" \Rightarrow " F_A^{ω} -pure injective modules". This implication is not necessary to hold for any right Gabriel topology as it is shown in §3. It is established that there is a duality between F_A -l.c. modules and left \hat{R}_A -modules, where \hat{R}_A is the completion of R with respect to A (see Theorem 2.6). Main results in this paper were announced without proofs in [11].

Concerning our terminologies and notations we refer to [8] and [9].

1. Throughout this paper, R denotes an HNP ring with quotient ring Q and K=Q/R=0. Let F be any non-trivial right Gabriel topology on R; "trivial" means that either all modules are F-torsion-free or all modules are F-torsion. Then F consists of essential right ideals of R (see [9, p. 96]). Let I be any essential right ideal of R. Define $(R: I)_I = \{q \in Q \mid qI \subseteq R\}$. Similarly $(R: J)_r = \{q \in Q \mid Jq \subseteq R\}$ for any essential left ideal J of R. An ideal X of R is called *invertible* if $(R: X)_I X = R = X(R: X)_r$. In this case we have $(R: X)_I = (R: X)_r$, denoted by X^{-1} . For any right Gabriel topology F, put $Q_F = \bigcup (R: I)_I (I \in F)$, the ring of quotients of R with respect to F. The family F_I of