PSEUDO-RANK FUNCTIONS ON CROSSED PRODUCTS OF FINITE GROUPS OVER REGULAR RINGS

JIRO KADO

(Received November 16, 1984)

Let R be a regular ring with a pseudo-rank function. The collection of all pseudo-rank functions of R (See [2, Ch. 17]) is denoted by P(R) which is a compact convex set, and the extreme boundary of P(R) is denoted by $\partial_e P(R)$. Our main objective is to study a crossed product R^*G of a finite multiplicative group G over a regular ring R. A crossed product R^*G of G over R is an associative ring which is a free left R-module containing an element $\bar{x} \in R^*G$ for each $x \in G$ and the set generated by the symbols $\{\bar{x}: x \in G\}$ is a basis of R^*G as a left R-module. Hence every element $\alpha \in R^*G$ can be uniquely written as a sum $\alpha = \sum_{x \in G} r_x \bar{x}$ with $r_x \in R$. The addition in R^*G is the obvious one and the multiplication is given by the formulas

$$\bar{x}\bar{y} = t(x, y)\overline{xy} \quad r\bar{x} = \bar{x}r^{\tilde{x}}$$

for all $x, y \in G$ and $r \in R$. Here the twisting $t: G \times G \to U(R)$ is a map from $G \times G$ to the group of units of R and for fixed $x \in G$, the map $\tilde{x}: r \to r^{\tilde{x}}$ is an automorphism of R. We assume throughout this note that the order |G| of G is invertible in R. The Lemma 1.1 of [9] implies that R^*G is also a regular ring. First we will study the question whether a pseudo-rank function P of R can be extended to one of R^*G . We shall show that P is extensible to R^*G if and only if P is G-invariant, i.e., $P(r) = P(r^{\tilde{x}})$ for all $r \in R$ and $x \in G$. More precisely for a G-invariant pseudo-rank function P, put $P^G(\alpha) = |G|^{-1} \sum_{i=1}^{n} P(r_i)$ for $\alpha \in R^*G$ if $_R(R^*G\alpha) \cong \bigoplus_{i=1}^{n} Rr_i$, where $r_i \in R$. Then P^G is a desired one of P.

R admits a pseudo-metric topology induced by each $P \in P(R)$. In [2, Ch. 19], K.R. Goodearl has studied the structure of the completion of *R* with respect to *P*-metric. Let \overline{R} be the *P*-completion of *R*, let \overline{P} be the extension of *P* on \overline{R} and let $\phi: R \to \overline{R}$ be the natural ring map, Our theorems are following:

(1) There exists a crossed product \overline{R}^*G and a ring map $\overline{\phi} \colon R^*G \to \overline{R}^*G$ such that the following diagram commute