Nomura, K. Osaka J. Math. 22 (1985), 767–771

MULTIPLY TRANSITIVITY OF PERFECT I-CODES IN SYMMETRIC GROUPS

Dedicated to Professor Hirosi Nagao on his 60th birthday

KAZUMASA NOMURA

(Received September 27, 1984)

1. Introduction

Let *n* be a positive integer, S_n be the symmetric group on $X = \{1, \dots, n\}$, *T* be the set of all transpositions in S_n and $U = T \cup \{1\}$. A subset *Z* of S_n is a 1-code in S_n if $Ug \cap Uh = \phi$ holds for any distinct two elements *g* and *h* in *Z*. A 1-code *Z* in S_n is perfect if $S_n = \bigcup_{g \in Z} Ug$ (see [1]). Let $X^{(k)}$ be the set of all ordered *k*-tuples of distinct elements of *X*. We consider the natural action of S_n on $X^{(k)}$. A subset *Z* of S_n is *k*-transitive if the following condition holds.

For any x and y in $X^{(k)}$, there exists some z in Z that moves x to y, and the number of such elements in Z is a constant that is independent of the choice of x and y.

In this paper we shall prove the following result.

Theorem. Perfect 1-codes in symmetric group of degree n are k-transitive for $0 \leq k < (n/2)$.

From the above theorem we easily get the following corollary by counting the number of elements of Z that move x to y for fixed x, $y \in X^{(k)}$.

Corollary. If S_n has a perfect 1-code then $\binom{n}{2}+1$ divides $\lfloor (n/2)+1 \rfloor!$.

In [4] Rothaus and Thompson proved that if S_n has a perfect 1-code then $\binom{n}{2}+1$ is not divisible by any prime exceeding $\sqrt{n}+1$. Their proof is based on the theory of group characters. In this paper we will give a combinatorial proof without using group characters.

Throughout this paper we assume that n is a fixed positive integer and S_n has a perfect 1-code Z. We shall use the following notations.

NOTATIONS $X = \{1, \dots, n\}.$