Maruyama, G. Osaka J. Math. 22 (1985), 697-732

WIENER FUNCTIONALS AND PROBABILITY LIMIT THEOREMS I: THE CENTRAL LIMIT THEOREMS

GISIRO MARUYAMA

(Received November 1, 1984)

1. Introduction

Our object is to study limit theorems in relation to functionals built on a dynamical system generated by the flow of Gaussian white noise or equivalently functionals subordinate to a real Gaussian stationary process

(1.1)
$$\xi(t) = \int_{-\infty}^{\infty} \exp i\lambda t \, d\beta(\lambda) \,,$$

with $E\xi(t) = 0$, complex spectral measure $d\beta$, and spectral measure $d\sigma(\lambda) = E |d\beta(\lambda)|^2$, which is absolutely continuous with respect to Lebesgue measure, $d\sigma(\lambda) = f(\lambda)d\lambda$.

Define $\mathcal{L}_{k,p}(1 \le k < \infty, 0 < p \le \infty)$ to be the set of complex symmetric Borel functions h on \mathbb{R}^k satisfying (i) $\overline{h(\lambda)} = h(-\lambda)$ (ii) $h \in L^p(d^k\sigma)$, $d^k\sigma = d\sigma(\lambda_1)d\sigma(\lambda_2)$ $\cdots d\sigma(\lambda_k)$, $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$. A real-valued second order strictly stationary process X(t), subordinate to ξ , with zero mean is represented by the Ito-Wiener expansion

(1.2)
$$X(t) = \sum_{k=1}^{\infty} X_k(t), \quad X_k(t) = \int c_k(\lambda) e_k(\lambda, t) d^k \beta,$$

where $c_k \in \mathcal{L}_{k,2}$, $e_k(\lambda, t) = \exp i\lambda t$, $\lambda = \lambda_1 + \dots + \lambda_k$, $d^k\beta = d\beta(\lambda_1) \cdots d\beta(\lambda_k)$; the *k*-fold multiple Ito Integral ([2], [3]) in (1.2) is understood in the usual way ([6], [7], [8]). Throughout the paper the whole space as an integration domain is suppressed in an integral sign. \mathbf{R}^k is such an example for the integral in (1.2).

Summarizing notational conventions: Constants will be denoted by c, c_1, c_2 , \cdots which are not always the same for each appearance. Given non-negative f(x), g(x), we use $f(x) \asymp g(x)$ to indicate that there exist constants $c_1, c_2 > 0$ such that $c_1 f(x) \le g(x) \le c_2 f(x)$ on a specified region.

To formulate the main theorem introduce an integral transform which maps $u \in L^1(d^k \sigma)$ $(k \ge 1)$ to $\varphi(u; \lambda) \in L^1(\mathbf{R})$, the space of Lebesgue integrable functions on \mathbf{R} :