Ikawa, M. Osaka J. Math. 22 (1985), 657-689

TRAPPING OBSTACLES WITH A SEQUENCE OF POLES OF THE SCATTERING MATRIX CONVERGING TO THE REAL AXIS

MITSURU IKAWA

(Received July 4, 1984)

1. Introduction. We consider the scattering of the acoustic equation by bounded obstacles. Let \mathcal{O} be a bounded open set in \mathbb{R}^3 with sufficiently smooth boundary. We set $\Omega = \mathbb{R}^3 - \overline{\mathcal{O}}$. Suppose that Ω is connected. Consider the following problem

$$\begin{cases} \Box u = \frac{\partial^2 u}{\partial t^2} - \sum_{j=1}^3 \frac{\partial^2 u}{\partial x_j^2} = 0 & \text{ in } (-\infty, \infty) \times \Omega \\ u(t, x) = 0 & \text{ on } (-\infty, \infty) \times \Gamma . \end{cases}$$

Denote by S(z) the scattering matrix for this problem. About the definition and the fundamental properties of the scattering matrix, see Lax and Phillips [8], especially Theorems 5.1 and 5.6 of Chapter V.

On relationships between geometric properties of \mathcal{O} and the location of poles of $\mathcal{S}(z)$ Lax and Phillips gave a conjecture [8, page 158] (see also Ralston [16, 17]), that is, for a nontrapping obstacle the scattering matrix $\mathcal{S}(z)$ is free for poles in $\{z; \text{Im } z \leq \alpha\}$ for some constant $\alpha > 0$, and for a trapping obstacle $\mathcal{S}(z)$ has a sequence of poles $\{z_j\}_{j=1}^{\infty}$ such that $\text{Im} z_j \rightarrow 0$ as $j \rightarrow \infty$. Concerning this conjecture Morawetz, Ralston and Strauss [14] and Melrose [11] proved that the part for nontrapping obstacles is correct. On the other hand, Bardos, Guillot and Ralston [1], Petkov [15] and Ikawa [4, 5, 6] made considerations on some simple cases of trapping obstacles. Among them the result of Ikawa [4, 5] shows that the part of the conjecture for trapping obstacles is not correct in general, namely for two strictly convex objects $\mathcal{S}(z)$ is free for poles in $\{z; \text{Im} z \leq \alpha\}$ ($\alpha > 0$). Yet it seems very sure that the conjecture remains to be correct for a great part of trapping obstacles. In spite of the conjecture we have not known even an example of obstacle \mathcal{O} for which is proved the existence of a sequence of poles of the scattering matrix converging to the real axis.¹

The purpose of this paper is to show an example of \mathcal{O} whose scattering

¹⁾ Ralston [16] gives examples of the scattering by the inhomogeneity of medium such that the scattering matrix has a sequence of poles converging to the real axis.