Ozawa, S. Osaka J. Math. 22 (1985), 639–655

ASYMPTOTIC PROPERTY OF AN EIGENFUNCTION OF THE LAPLACIAN UNDER SINGULAR VARIATION OF DOMAINS — THE NEUMANN CONDITION —

Shin OZAWA

(Received April 6, 1984)

1. Introduction

We consider a bounded domain Ω in \mathbb{R}^2 with smooth boundary γ . Let $B_{\mathfrak{e}}$ be the \mathcal{E} -disk whose center is $\widetilde{w} \in \Omega$. We put $\Omega_{\mathfrak{e}} = \Omega \setminus \overline{B}_{\mathfrak{e}}$. We consider the following eigenvalue problems (1.1) and (1.2):

(1.1) $-\Delta_{\mathbf{x}} u(\mathbf{x}) = \lambda(\varepsilon) u(\mathbf{x}), \quad \mathbf{x} \in \Omega_{\varepsilon},$ $u(\mathbf{x}) = 0, \quad \mathbf{x} \in \gamma,$ $\frac{\partial u}{\partial \mathbf{y}}(\mathbf{x}) = 0, \quad \mathbf{x} \in \partial B_{\varepsilon},$

where $\partial/\partial \nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_{ϵ} .

(1.2)
$$-\Delta_x u(x) = \lambda u(x), \quad x \in \Omega,$$
$$u(x) = 0, \quad x \in \gamma.$$

Let $0 < \mu_1(\varepsilon) \le \mu_2(\varepsilon) \le \cdots$ be the eigenvalues of (1.1). Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of (1.2). We arrange them repeatedly according to their multiplicities. Denote by $\{\varphi_j(\varepsilon)\}_{j=1}^{\infty}$ ($\{\varphi_j\}_{j=1}^{\infty}$, respectively) a complete orthonomal basis of $L^2(\Omega_{\varepsilon})$ ($L^2(\Omega)$, respectively) consisting of eigenfunction of $-\Delta$ associated with $\{\mu_j(\varepsilon)\}_{j=1}^{\infty}$ ($\{\varphi_j\}_{j=1}^{\infty}$, respectively).

In this note we consider the following problem: Problem. What can one say about asymptotic behaviour of $\varphi_j(\mathcal{E})$ as \mathcal{E} tends to zero?

It is well known that $\mu_j(\varepsilon)$ tends to μ_j as ε tends to zero. See Rauch-Taylor [8], Ozawa [5]. As a consequence, $\mu_j(\varepsilon)$ is simple for small $\varepsilon > 0$, if we assume that μ_j is simple. Thus $\varphi_j(\varepsilon)$ is uniquely determined up to the arbitratiness of multiplication by +1 or -1.

We have the following Theorem 1. Theorem 2 is our main result.