RANDOM ITERATION OF ONE-DIMENSIONAL TRANSFORMATIONS

Takehiko MORITA

(Received October 12, 1983)

1. Introduction

The most familiar one-dimensional dynamical system is given by

$$(1.1) x_{n+1} = f(x_n) for n \ge 0,$$

where f is a transformation from an interval into itself. Usually f in (1.1) is assumed to be of piecewise C^2 . Moreover if f is uniformly expanding the asymptotic behavior of x_n is investigated in detail (see [7], [8], and [14]). But it will be more natural to consider that f may be changed for each n, by chance. For example, let S be a measurable space, let $\{f_s\}_{s\in S}$ be a family of transformations from the unit interval I into itself and let $\{X_n\}_{n=1}^{\infty}$ be a sequence of S-valued independent and identically distributed random variables on a probability space (Ω, \mathcal{F}, P) . The relation between x_n and x_{n+1} is given by

(1.2)
$$x_{n+1} = f_{X_{n+1}(\omega)}(x_n) \quad n \ge 0.$$

In this paper, we will study the asymptotic behavior of x_n given by (1.2). Following S. Kakutani [5] and T. Ohno [9], we introduce the skew product transformation T on $I \times \Omega$ satisfying

$$(1.3) \operatorname{proj}_{I} \circ T^{n}(x, \omega) = f_{X_{n}(\omega)} f_{X_{n-1}(\omega)} \cdots f_{X_{1}(\omega)} x, \quad n \geq 0,$$

and deduce our problem to the investigation of the asymptotic behavior of T. In section 5, we introduce an expanding condition (A.1) for the random transformations f_{X_n} 's. Under this condition, similar to a single piecewise C^2 uniformly expanding transformation, we can obtain the following results:

- I. Let m denote the Lebesgue measure on I. Then T has a finite number of $(m \times P)$ -absolutely continuous ergodic probability measures such that any $(m \times P)$ -absolutely continuous T-invariant σ -additive finite set function can be written as a linear combination of them. These ergodic measures have disjoint supports, each of which is called an ergodic component of T.
- II. Each ergodic component of T can be decomposed into finitely many exact components which are permuted cyclically by T.