Watanabe, T. Osaka J. Math. 22 (1985), 447-462

ON THE SPECTRUM REPRESENTING ALGEBRAIC K-THEORY FOR A FINITE FIELD

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

TAKASHI WATANABE

(Received February 20, 1984)

Let r be an odd prime power. Let F_r denote the field with r elements. According to [11] and others, there exists a (-1)-connected Ω -spectrum KF_r whose 0-th space is $\mathbb{Z} \times BGLF_r^+$, where $BGLF_r^+$ is the plus construction of the classifying space of GLF_r . KF_r is a ring spectrum with a unit.

Let p be an odd prime. The object of this paper is the localization of KF_r at p, $KF_{r(p)}$, for the case that r gives a generator of the group of units $(\mathbb{Z}/p^2)^{\times}$. Then the associated generalized cohomology theory $KF_r^*(; \mathbb{Z}_{(p)})$ appears as a secondary cohomology theory determined by a certain stable operation in connected complex K-theory localized at p. From this interpretation we deduce some results about the multiplicative structure on $KF_{r(p)}$, which are basic to the study of the ring structure of $KF_{r^*}(CP^{\infty}; \mathbb{Z}_{(p)})$ etc. In particular we can characterize the product on $KF_{r(p)}$ by a certain property.

For simplicity we write A for $KF_{r(p)}$ (see [8]). We shall work in the homotopy category of CW-spectra (see [3, III]).

The paper is organized as follows. In §0 we collect several results on A. In §1 we compute $H^*(A; \mathbb{Z}/p)$. In §2 we compute $H_*(A; \mathbb{Z}/p)$. In §3 we consider the left coaction of \mathcal{A}_* on $H_*(A; \mathbb{Z}/p)$ and discuss the \mathcal{B} -module structure of $H^*(A; \mathbb{Z}/p)$, where $\mathcal{B}=\Lambda(Q_0, Q_1)\subset \mathcal{A}$. In §4 we prove our main results, which are Theorems 4.3 and 4.5.

0. The spectrum A

Let p be a fixed odd prime. Let $bu_{(p)}$ be the Ω -spectrum representing connected complex K-theory localized at p. This is a ring spectrum with a unit and $\pi_*(bu_{(p)}) = \mathbb{Z}_{(p)}[u]$ where |u| = 2. It is known that

$$bu_{(p)} = \bigvee_{j=1}^{p-1} \Sigma^{2(j-1)} G$$

for a spectrum G [6]. This is a ring spectrum with a unit and $\pi_*(G) = Z_{(p)}[v]$ where |v| = 2(p-1). According to [4], if $\kappa: G \to bu_{(p)}$ is the injection, then the diagram