Watanabe, A. Osaka J. Math. 22 (1985), 393-400

ON GENERALIZED DECOMPOSITION NUMBERS AND FONG'S REDUCTIONS

Dedicated to Professor Hirosi Nagao on his 60th birthday

ATUMI WATANABE

(Received August 7, 1984)

Introduction

In this paper we investigate how generalized decomposition numbers behave under Fong's reductions.

Let G be a finite group and p be a fixed prime number. If π is a p-element of G and B is a p-block of G, then for an ordinary irreducible character χ in B and for each p-regular element ρ of the centralizer $C_G(\pi)$ of π , we have

$$\chi(\pi
ho) = \sum_{\phi} d(\chi, \, \pi, \, \phi) \phi(
ho) \, .$$

Here ϕ ranges over the irreducible Brauer characters in the *p*-blocks of $C_G(\pi)$ associated with *B*. We have the following theorem related to the Fong's first reduction.

Theorem 1. Let H be a subgroup of G, and let B and \tilde{B} be p-blocks of G and H, respectively. We assume that $\tilde{X} \rightarrow \tilde{X}^{G}$ is a 1–1 correspondence between the ordinary irreducible characters in \tilde{B} and those in B, where \tilde{X}^{G} is the character of G induced from \tilde{X} . Then the following holds.

(i) B and \tilde{B} have a common defect group D.

(ii) Let \tilde{b} be a root of \tilde{B} in $C_{H}(D)D$. Then $\tilde{b}^{C}{}_{G}{}^{(D)D}$ is defined in the sense of Brauer [2]. We put $b = \tilde{b}^{C}{}_{G}{}^{(D)D}$. Then b is a root of B in $C_{G}(D)D$ and $T(b) = T(\tilde{b})C_{G}(D)$ where T(b) is the inertial group of b in $N_{G}(D)$ and $T(\tilde{b})$ is the inertial group of b in $N_{H}(D)$. In particular $T(b)/C_{G}(D)D \cong T(\tilde{b})/C_{H}(D)D$.

(iii) Let $\{(\pi_i, \tilde{b}_i), i=1, 2, ..., n\}$ be a set of representatives for the conjugacy classes of subsections associated with \tilde{B} . Then $\tilde{b}_i^{c} \sigma^{(\pi_i)}$ is defined and $\tilde{\phi} \rightarrow \tilde{\phi}^{c} \sigma^{(\pi_i)}$ is a 1-1 correspondence between the irreducible Brauer characters in \tilde{b}_i and those in $\tilde{b}_i^{c} \sigma^{(\pi_i)}$. Furthermore $\{(\pi_i, \tilde{b}_i^{c} \sigma^{(\pi_i)}), i=1, 2, ..., n\}$ is a set of representatives for the conjugacy classes of subsections associated with B.

(iv) Let \tilde{X} be an ordinary irreducible character in \tilde{B} and $\tilde{\phi}$ be an irreducible Brauer character in \tilde{b}_i . Then