Jha, V: and Johnson, N. L. Osaka J. Math. 22 (1985), 365-377

ON SPREADS OF CHARACTERISTIC p ADMITTING NONSOLVABLE GROUPS, WHOSE SYLOW p-SUBGROUPS ARE PLANAR

VIKRAM JHA AND NORMAN L. JOHNSON

(Received May 17, 1984)

Introduction

In this paper, π denotes a translation plane of order *n* and characteristic *p* admitting, in its translation complement, a group *G* such that $\sqrt{n}||G|$. We use *S* to denote a Sylow *p*-subgroup of *G* and assume that *S* is planar with fixed plane π_s .

The recently completed classification due to Foulser and Johnson [9, 10], of the finite translation planes of order n that admit $SL(2, \sqrt{n})$ in their translation complement, has the following implication for π .

Theorem A. Suppose the plane π_s is a Baer subplane of π and let \mathcal{P}_n denote the class of nonisomorphic translation planes of order n that admit $SL(2, \sqrt{n})$ in their translation complement. Then both the following statements are valid.

(a) If $S \triangleleft G$ then π is isomorphic to a plane in \mathcal{P}_n .

(b) If G is nonsolvable then either $S \triangleleft G$, and so part (a)

applies, or π_s is a G-invariant Desarguesian subplane such that restriction homomorphism $G \rightarrow G | \pi_s$ has solvable kernel but its image is a (meta) cyclic extension of SL(2, 5).

Proof. Suppose $S \triangleleft G$. It is now sufficient to verify that $G \supseteq SL(2, \sqrt{n})$. For odd $n(\neq 9)$ this follows from Foulser [7, corollary 4.2 and proposition 5.1], while for *n* even we get the required conclusion from Dempwolff [2, Satz, p. 1]. Since n=9 presents no problems, case (a) applies. If G is nonsolvable and $S \triangleleft G$ then the conclusions of case (b) are easily deduced from Foulser [6]: the details are very similar to the proof of proposition 4.4.

The object of the present paper is to attempt a generalization of theorem A by weakening the assumption imposed on π_s ; specifically, instead of assuming that π_s is a Baer subplane of π , we shall assume that π_s has order at least $n^{1/4}$. If *n* is odd, and this is the case we shall mainly be concerned with, it turns out that the conclusions of theorem A are essentially unchanged; though there may exist a new plane of order 5⁴.