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0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in
[1], [2], [7] and [9] which were concerned with ordering on a field. In this note,
we study about signatures on rings as some generalization of infinite primes and
signatures of fields in [2]. In the section 1, we introduce notions of [/-prime
and signature of a ring which are generalizations of infinite prime and signature
of field. In the section 2, we show that a [/-prime of a commuative ring defines
a signature on the ring. In the sections 3 and 4, we consider the category of
signatures and a space of signatures on a ring which include notions of extension
of signature and space of ordering on fields (cf. [2] and [8]), and investigate them.
Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and T a normal subsemigroup of 5,
(cf. [6], p. 195), denoted by Γ<| 5, that is, T is a subsemigroup of S which satisfies
1) for xy y^S, xy^T implies p G Γ , 2) if there is an xG T with xy^T, then
y€=T, and 3) for every x£ίS, there exists an x'EϊS with x'x€ΞT. We can define
a binary relation - — Ό Π 5 ; for x, y€Ξ S, x<—y if and only if there is a #€Ξ S such that
both zx and zy are contained in T. Then, the relation <—' is an equivalence
relation on S, and is compatible with the multiplication of S, so the quotient
set £/~, denoted by S/T, makes a group such that the canonical map ψ: S->S/
T; x\—> [x] is a homomorphism with Ker ψ= T.

Let R be any ring with identity 1, and P a preprime of R ([3]), that is, P is
closed under addition and multiplication of R and — 1 φ P . We put p(P) = Pf]
- P , RP= {x^R\xp(P)Όp(P)xc:p(P)}J R+P = RP\ρ(P) ( := ix<ΞRP\x$p(P)}),
P+ — P\p(P) ( = P\—P). We shall say'a preprime P to be complete quasi-prime,
if it satisfies the following conditions

1) p(P) is an ideal of RP such that RPjp{P) is an integral domain,
2) P+<IRP under the multiplication of RP.


