Kanzaki, T. Osaka J. Math. 22 (1985), 327-338

NOTES ON SIGNATURES ON RINGS

Dedicated to Professor Hirosi Nagao on his 60th birthday

Teruo KANZAKI

(Received June 21, 1984)

0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in [1], [2], [7] and [9] which were concerned with ordering on a field. In this note, we study about signatures on rings as some generalization of infinite primes and signatures of fields in [2]. In the section 1, we introduce notions of U-prime and signature of a ring which are generalizations of infinite prime and signature of field. In the section 2, we show that a U-prime of a commutative ring defines a signature on the ring. In the sections 3 and 4, we consider the category of signatures and a space of signatures on a ring which include notions of extension of signature and space of ordering on fields (cf. [2] and [8]), and investigate them. Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and T a normal subsemigroup of S, (cf. [6], p. 195), denoted by $T \triangleleft S$, that is, T is a subsemigroup of S which satisfies 1) for x, $y \in S$, $xy \in T$ implies $yx \in T$, 2) if there is an $x \in T$ with $xy \in T$, then $y \in T$, and 3) for every $x \in S$, there exists an $x' \in S$ with $x'x \in T$. We can define a binary relation \sim on S; for $x, y \in S, x \sim y$ if and only if there is a $x \in S$ such that both xx and xy are contained in T. Then, the relation \sim is an equivalence relation on S, and is compatible with the multiplication of S, so the quotient set S/\sim , denoted by S/T, makes a group such that the canonical map $\psi: S \rightarrow S/T$; $x \mapsto [x]$ is a homomorphism with Ker $\psi = T$.

Let R be any ring with identity 1, and P a preprime of R([3]), that is, P is closed under addition and multiplication of R and $-1 \notin P$. We put $p(P) = P \cap$ -P, $R_P = \{x \in R \mid xp(P) \cup p(P)x \subset p(P)\}$, $R_P^+ = R_P \setminus p(P)$ (:= $\{x \in R_P \mid x \notin p(P)\}$), $P^+ = P \setminus p(P)$ (= $P \setminus -P$). We shall say a preprime P to be complete quasi-prime, if it satisfies the following conditions;

- 1) p(P) is an ideal of R_P such that $R_P/p(P)$ is an integral domain,
- 2) $P^+ \triangleleft R_P^+$ under the multiplication of R_P .