Kobayashi, T. Osaka J. Math. 22 (1985), 289-297

HOMEOMORPHISMS OF 3-MANIFOLDS AND TOPOLOGICAL ENTROPY

Dedicated to Professor Itiro Tamura on his 60th birthday

Tsuyoshi KOBAYASHI

(Received June 21, 1984)

1. Introduicton

The topological entropy h(f) of a self-map f of a metric space is a measure of its dynamical complexity (for the definition of topological entropy see section 2 below). In $[T_1]$ Thurston has shown that any homeomorphism f of a compact hyperbolic surface is isotopic to φ which is either periodic, pseudo-Anosov, or reducible (see also [F-L-P], [H-T], [M]). We call φ Thurston's cannonical form of f. In section 2 we show that $h(\varphi) \leq h(f)$ i.e. φ attains the minimal entropy in its isotopy class. Hence from the dynamical viewpoint Thurston's cannonical form plays an important role ([H], [K], [Smi]).

In this paper, we find a similar cannonical form of a homeomorphism of a class of geometric 3-manifolds (for the definition and fundamental properties of geometric 3-manifolds see [Sc]). We note that every self-homeomorphism of a hyperbolic 3-amnifold is homotopic to a periodic one ([Mo]). In the following, we consider homeomorphisms of an $H^2 \times R$, $\widetilde{SL_2(R)}$, or Nil 3-manifold M.

Then our main result is:

Theorem 2. Let f be a homeomorphism of an $H^2 \times R$, $\widetilde{SL_2(R)}$, or Nil 3manifold M. Then f is homotopic to φ such that either:

(i) φ is of type periodic,

(ii) φ is of type pseudo-Anosov, or

(iii) there is a system \mathfrak{T} of tori in M such that φ is reducible by \mathfrak{T} . There is a φ -invariant regular neighborhood $\eta(\mathfrak{T})$ of \mathfrak{T} such that each φ -component of M—Int $\eta(\mathfrak{T})$ satisfies (i) or (ii). Each component $\eta(T_j)$ of $\eta(\mathfrak{T})$ is mapped to itself by some positive iterate φ^{m_j} of φ and $\varphi^{m_j}|_{\eta(T_i)}$ is a twist homeomorphism.

For the definitions of the terms which appear in Theorem 2, see section 4 below. We note that if M is sufficiently large, then φ is isotopic to f ([Wa]).

In section 5 we show that the above φ attains the minimal entropy in its homotopy class, and $h(\varphi)$ is positive if and only if φ contains a component of type pseudo-Anosov.