Ranjan, A. Osaka J. Math. 22 (1985), 243-260

RIEMANNIAN SUBMERSIONS OF SPHERES WITH TOTALLY GEODESIC FIBRES

AKHIL RANJAN

(Received May 28, 1984)

Introduction

Let M and B be C^{∞} Riemannian manifolds. By a *Riemannian submersion* we mean a C^{∞} mapping $\pi: M \to B$ such that π is of maximal rank and π_* preserves the lengths of horizontal vectors, i.e., vectors orthogonal to the fibre $\pi^{-1}(x)$ for $x \in B$.

In his paper [7] Richard H. Escobales, JR dealt with the problem of classifying (upto equivalence) the Riemannian submersions of standard spheres $S^{n}(1)$ of unit radius in the Euclidean space \mathbb{R}^{n+1} onto various Riemannian manifolds B under the assumption that the fibres are connected and totally geodesic. He proved (Theorem 3.5 [7]) that as a fibre bundle, the Riemannian submersion $\pi: S^{n} \to B$ is one of the following types:

a)
$$S^1 \cdots S^{2n+1}$$

 $CP^n \ n \ge 2$
b) $S^3 \cdots S^{4n+3}$
 $HP^n \ \text{for } n \ge 2$
c) $S^1 \cdots S^3$
 $S^{2(\frac{1}{2})}$
d) $S^3 \cdots S^7$
 \downarrow
 $S^{4(\frac{1}{2})}$
e) $S^7 \cdots S^{15}$
 \downarrow
 $S^3(\frac{1}{2})$

Further in cases (a) and (b), B is isometric to complex and quaternionic projective space respectively of sectional curvature K^* with $1 \le K^* \le 4$. In cases (c), (d), (e), B is isometric to a sphere of curvature 4 as indicated in the diagram.

He also proved uniqueness in the cases (a), (b), and (c) but left the cases (d)