ON NON-SINGULAR HYPERPLANE SECTIONS OF SOME HERMITIAN SYMMETRIC SPACES

Yusuke SAKANE

(Received September 6, 1982)

Let $P^{k}(\boldsymbol{C})$ denote a complex projective space of dimension k. The product space $P^{m}(\boldsymbol{C}) \times P^{n}(\boldsymbol{C})$ has a natural imbedding in $P^{m n+m+n}(\boldsymbol{C})$, called the Segre imbedding. Let V be a non-singular hyperplane section of $P^{m}(\boldsymbol{C}) \times P^{n}(\boldsymbol{C})$ in $P^{m n+m+n}(\boldsymbol{C})$. The identity connected component $\operatorname{Aut}_{0}(V)$ of the group of all holomorphic automorphisms of V has been determined by $J-I$. Hano [3]. For an irreducible Hermitian symmetric space M of compact type we have the canonical equivariant imbedding $j: M \rightarrow P^{N}(\boldsymbol{C})$. Now take a non-singular hyperplane section V of M in $P^{N}(\boldsymbol{C})$. In this note we shall determine the structure of the Lie algebra of $\operatorname{Aut}(V)$ fro the cases when M is a complex Grassmann manifold $G_{m, 2}(\boldsymbol{C})$ of 2-planes in \boldsymbol{C}^{m} and when M is $\mathrm{SO}(10) / \mathrm{U}(5)$, by applying Hano's method. In particular, using Lichnerowicz-Matsushima's theorem, we prove the following.

1) For the case M is $G_{m, 2}(\boldsymbol{C})(m \geq 4)$, if m is odd a non-singular hyperplane section V does not admit any Kähler metric with constant scalar curvature, and if m is even V is a kählerian C-space.
2) For the case M is $\mathrm{SO}(10) / \mathrm{U}(5), V$ does not admit any Kahler metric with constant scalar curvature.

The author would like to express his thanks to the referee for the valuable advice.

1. Preliminaries

A simply connected compact homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it admits a Kähler metric. We recall some known facts on kählerian C-spaces and holomorphic line bundles on these complex manifolds (cf. [1], [4]).

Fact 1. Every holomorphic line bundle on a kählerian C-space M is homogeneous. If we denote by $H^{1}\left(M, \theta^{*}\right)$ the group of all isomorphism classes of holomorphic line bundles on M and by $c_{1}(F)$ the Chern class of a holomorphic line bundle F, then the homomorphism $F \rightarrow c_{1}(F): H^{1}\left(M, \theta^{*}\right) \rightarrow H^{2}(M, \boldsymbol{Z})$ is bijective.

Fact 2. Every ample holomorphic line bundle on a kählerian C-space M is

