ON NON-SINGULAR HYPERPLANE SECTIONS OF SOME HERMITIAN SYMMETRIC SPACES

YUSUKE SAKANE

(Received September 6, 1982)

Let $P^k(\mathbf{C})$ denote a complex projective space of dimension k. The product space $P^m(\mathbf{C}) \times P^n(\mathbf{C})$ has a natural imbedding in $P^{mn+m+n}(\mathbf{C})$, called the Segre imbedding. Let V be a non-singular hyperplane section of $P^m(\mathbf{C}) \times P^n(\mathbf{C})$ in $P^{mn+m+n}(\mathbf{C})$. The identity connected component $\operatorname{Aut}_0(V)$ of the group of all holomorphic automorphisms of V has been determined by J-I. Hano [3]. For an irreducible Hermitian symmetric space M of compact type we have the canonical equivariant imbedding $j: M \to P^N(\mathbf{C})$. Now take a non-singular hyperplane section V of M in $P^N(\mathbf{C})$. In this note we shall determine the structure of the Lie algebra of $\operatorname{Aut}(V)$ fro the cases when M is a complex Grassmann manifold $G_{m,2}(\mathbf{C})$ of 2-planes in \mathbf{C}^m and when M is $\operatorname{SO}(10)/\operatorname{U}(5)$, by applying Hano's method. In particular, using Lichnerowicz-Matsushima's theorem, we prove the following.

1) For the case M is $G_{m,2}(C)$ $(m \ge 4)$, if m is odd a non-singular hyperplane section V does not admit any Kähler metric with constant scalar curvature, and if m is even V is a kählerian C-space.

2) For the case M is SO(10)/U(5), V does not admit any Kähler metric with constant scalar curvature.

The author would like to express his thanks to the referee for the valuable advice.

1. Preliminaries

A simply connected compact homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it admits a Kähler metric. We recall some known facts on kählerian C-spaces and holomorphic line bundles on these complex manifolds (cf. [1], [4]).

Fact 1. Every holomorphic line bundle on a kählerian C-space M is homogeneous. If we denote by $H^1(M, \theta^*)$ the group of all isomorphism classes of holomorphic line bundles on M and by $c_1(F)$ the Chern class of a holomorphic line bundle F, then the homomorphism $F \rightarrow c_1(F)$: $H^1(M, \theta^*) \rightarrow H^2(M, \mathbb{Z})$ is bijective.

Fact 2. Every ample holomorphic line bundle on a kählerian C-space M is