A GENERALIZATION OF HALL QUASIFIELDS

YUTAKA HIRAMINE

(Received March 26, 1984)

1. Introduction

Let $Q=Q(+, \circ)$ be a right quasifield which satisfies the following conditions:

(1.1) Q is a two dimensional left vector space over its kernel K with a basis $\{1, \lambda\}$.

(1.2) There exist two mappings r and s from $K^{\ddagger}=K-\{0\}$ into K such that every element $\xi=a+b\lambda$ of Q not in K satisfies the equation $\xi^2-r(b)\xi-s(b)=0$.

(1.3) Each element of K commutes with all the elements of Q.

Several examples of such Q are known. For example, the Hall quasifields satisfy the conditions above, where r and s are constant functions and the quadratic polynomial x^2-rx-s is irreducible over K. Moreover, the quasifields which correspond to the spread sets constructed by Narayana Rao and Satyanarayana [3] also satisfy the conditions above, where $r(x)=3x^{-1}$, $s(x)=2x^{-2}$ and $K=GF(5^{2n-1})$.

The purpose of this paper is to study the quasifields satisfying the conditions (1.1)-(1.3). In §2 we prove the following theorem which gives a condition for $Q(+, \circ)$ to be a quasifield.

Theorem 1. Let K be a field and let r and s be mappings from K^{\ddagger} into K such that (i) $x^2-r(u)x-s(u)$ is irreducible over K for each $u \in K^{\ddagger}$ and (ii) $v^2 - r(x)v - s(x) = wx$ has a unique solution in K^{\ddagger} for each $v \in K$, $w \in K^{\ddagger}$. Let $Q = \{x+y\lambda \mid x, y \in K\}$ be a left vector space over K. If a multiplication \circ on Q is defined by

$$(z+t\lambda)\circ(x+y\lambda) = \begin{cases} zx-ty^{-1}F(x, y)+(zy-tx+t r(y))\lambda & \text{if } y \neq 0, \\ zx+tx\lambda & \text{if } y=0, \end{cases}$$

where $F(x, y) = x^2 - r(y)x - s(y)$, then $Q(+, \circ)$ is a quasifield which satisfies (1.1)-(1.3).

Let K=GF(q) and let Φ_{κ} be the set of the ordered pairs (r, s) such that r and s satisfy (i) and (ii) of Theorem 1. The spread set $\Sigma_{r,s}$ which corre-