Oyama, T. Osaka J. Math. 22 (1985), 35-54

ON QUASIFIELDS

Dedicated to Professor Kentaro Murata on his 60th birthday

Tuyosi OYAMA

(Received August 22, 1983)

1. Introduction

A finite translation plane Π is represented in a vector space V(2n, q) of dimension 2n over a finite field GF(q), and determined by a spread $\pi = \{V(0), V(\infty)\} \cup \{V(\sigma) | \sigma \in \Sigma\}$ of V(2n, q), where Σ is a subset of the general linear transformation group GL(V(n, q)). Furthermore Π is coordinatized by a quasifield of order q^n .

In this paper we take a GF(q)-vector space in $V(2n, q^n)$ and a subset Σ^* of $GL(n, q^n)$, and construct a quasifield. This quasifield consists of all elements of $GF(q^n)$, and has two binary operations such that the addition is the usual field addition but the multiplication is defined by the elements of Σ^* .

2. Preliminaries

Let q be a prime power. For $x \in GF(q^n)$ put $x = x^{(0)}$, $\bar{x} = x^{(1)} = x^q$ and $x^{(i)} = x^{q^i}$, $i=2, 3, \dots, n-1$. Then the mapping $x \to x^{(i)}$ is the automorphism of $GF(q^n)$ fixing the subfield GF(q) elementwise.

For a matrix $\alpha = (a_{ij}) \in GL(n, q^n)$ put $\overline{\alpha} = (\overline{a_{ij}})$. Let

$$\boldsymbol{\omega} = \begin{pmatrix} 0 \cdots \cdots 0 & 1 \\ 1 & 0 \cdots \cdots & 0 \\ 0 & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 \cdots \cdots & 0 & 1 & 0 \end{pmatrix}$$

be an $n \times n$ permutation matrix. Set $\mathfrak{A} = \{\alpha \in GL(n, q^n) | \overline{\alpha} = \alpha \omega\}$.

Lemma 2.1. $\mathfrak{A}=GL(n,q)\alpha_0$ for any $\alpha_0 \in \mathfrak{A}$. Furthermore let α be an $n \times n$ matrix over $GF(q^n)$. Then $\alpha \in \mathfrak{A}$ if and only if

$$\alpha = \begin{pmatrix} a_0 & a_0^{(1)} \cdots & a_0^{(n-1)} \\ [a_1 & a_1^{(1)} \cdots & a_1^{(n-1)} \\ \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1}^{(1)} \cdots & a_{n-1}^{(n-1)} \end{pmatrix}$$