ABOUT STOCHASTIC INTEGRALS WITH RESPECT TO PROCESSES WHICH ARE NOT SEMI-MARTINGALES

NICOLAS BOULEAU

(Received April 26, 1984)

1. Introduction

Let $(\Omega, \mathcal{F}_t, \mathbf{P})$ be a probability space with an increasing right continuous family of $(\mathcal{F}_{\infty}, \mathbf{P})$ -complete σ -algebras (\mathcal{F}_t) , and let \mathcal{P} be the predictable σ -algebra induced on $\Omega \times \mathbf{R}_+$ by the family (\mathcal{F}_t) .

For $H \in \mathcal{P}$, we write H_s for the random variable $\omega \rightarrow 1_H(s, \omega)$. If Z = N + B is a semi-martingale such that N is a square integrable martingale and B an adapted process with square integrable variation, the mapping

(1)
$$H \to \int_0^\infty H_s \, dZ_s$$

defines a σ -additive vector measure on $(\Omega \times \mathbf{R}_+, \mathcal{P})$ with values in $L^2(\Omega, \mathcal{F}_{\infty}, \mathbf{P})$. It has been shown by several authors that conversely if μ is a σ -additive measure from \mathcal{P} to $L^2(\Omega, \mathcal{F}_{\infty}, \mathbf{P})$ given on the elementary predictable sets H of the form

$$H = h \times [s, t] \qquad 0 < s < t, \quad h \in \mathcal{F}_s$$

by

$$\mu(H) = 1_{k}(Z_{t}-Z_{s})$$

for a mean square right-continuous adapted process Z, then there is a modification of Z which is a semi-martingale [2].

Nevertheless, if we consider an other probability space $(W, \mathcal{W}, \mathbf{Q})$, an adapted process $(\omega, t) \rightarrow Z_t(\omega, w)$ depending on $w \in W$, and a measure μ which satisfies (2) for elementary predictable sets, and if we replace σ -additivity in $L^2(\mathbf{P})$ for each $w \in W$ by σ -additivity in $L^2(\mathbf{P} \times \mathbf{Q})$, it becomes possible that Z_t fails to be a semi-martingale for fixed w.

In the example that we give, Z_t is, for fixed w, the sum of a martingale and a process of zero energy similar to those considered by Fukushima [3] in order to give a probabilistic interpretation of functions in a Dirichlet space.