Komatsu, T. and Takashima, K. Osaka J. Math. 21 (1984), 913-929

ON THE EXISTENCE OF INTERSECTIONAL LOCAL TIME EXCEPT ON ZERO CAPACITY SET

Dedicated to the memory of Professor Takehiko Miyata

TAKASHI KOMATSU AND KEIZO TAKASHIMA

(Received December 2, 1983)

0. Introduction

Let W be the space of \mathbb{R}^d -valued continuous functions on [0, 1], where $d \ge 2$. We shall consider the functionals on W

(0.1)
$$\psi(\alpha, w) = \frac{d-\alpha}{4} \int_0^1 \int_0^1 |w(t)-w(s)|^{-\alpha} ds dt, \quad \alpha < 2,$$

which may take infinite value. These functionals play an important role in the investigation of properties of function w: the finiteness of $\psi(\alpha, w)$ implies that the Hausdorff dimension of range $\{w(t); 0 \le t \le 1\}$ is no less than α (cf. Taylor [9]). Let Q be the Wiener measure on W. Since $\psi(\alpha, w)$ is finite Q-almost surely for any $\alpha < 2$, the Hausdorff dimension of $\{w(t); 0 \le t \le 1\}$ is no less than 2 Q-almost surely.

Next, let α tend to 2. Though the mean of $\psi(\alpha, \cdot)$ with respect to Q diverges to infinity, the functional

(0.2)
$$\Psi_n(w) = \psi(2 - 2^{-n}, w) - 2^n$$

converges Q-almost surely. In case d=2, Varadhan studied this limit functional in connection with the quantum field theory and proved its existence (cf. Appendix to Symanzik [8]).

Recently Fukushima [1] showed that various famous properties of sample paths such as Lévy's Hölder continuity hold not only Q-almost surely but also quasi-everywhere, i.e. except on a set of zero capacity with respect to the Ornstein-Uhlenbeck process on W. On the other hand, Köno [4] and [5] proved that if $d \leq 4$, then sample paths are recurrent with positive capacity. Therefore 'quasi-everywhere' is strictly finer than 'Q-almost everywhere'.

The purpose of this paper is to show that $\psi(\alpha, w)$ is finite quasi-everywhere for any $\alpha < 2$ and that $\lim \Psi_n(w) = \Psi(w)$ exists quasi-everywhere. The former result implies the theorem in Komatsu and Takashima [3]: the Hausdorff