Kunita, H. Osaka J. Math. 21 (1984), 883–911

ON THE CONVERGENCE OF SOLUTIONS OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS AS STOCHASTIC FLOWS OF DIFFEOMORPHISMS

HIROSHI KUNITA

(Received November 28, 1983)

Introduction

Let $F(\tau, x, t, \omega)$ and $G(\tau, x, t, \omega)$ be random vector fields on \mathbb{R}^d with time parameters τ , t satisfying certain statistical properties. Let $\psi_t^{\mathfrak{e}}$ be a solution of the stochastic ordinary differential equation

$$\frac{dx}{dt} = \varepsilon F(\varepsilon^2 t, x, t, \omega) + \varepsilon^2 G(\varepsilon^2 t, x, t, \omega).$$

A lot of attention has been shown to the limiting behavior of the solution $\psi_i^{\mathfrak{e}}$ as $\mathcal{E} \to 0$ and $t \to \infty$ with $\mathcal{E}^2 t$ remaining fixed, since the work of Khasminskii [8]. See also [3], [7], [13], [14], [16]. In these works, it is proved that $\phi_i^{\mathfrak{e}} \equiv \psi_{t/\mathfrak{e}^2}^{\mathfrak{e}}$ converges weakly to a diffusion process ϕ_i with local characteristics a^{ij} and b^i which are determined from random vector fields $F(\tau, x, t, \omega)$ and $G(\tau, x, t, \omega)$ in a suitable way. (See (1.6)-(1.8) of Section 1). Note that $\phi_i^{\mathfrak{e}}$ satisfies

$$\frac{d}{dt}\phi_t^{\mathfrak{e}}=F_{\mathfrak{e}}(t,\,\phi_t^{\mathfrak{e}})\,,$$

where

$$F_{\epsilon}(t, x) = \frac{1}{\varepsilon} F(t, x, \frac{t}{\varepsilon^2}) + G(t, x, \frac{t}{\varepsilon^2}).$$

The purpose of this paper is to show that the weak limit of ϕ_t^e satisfies a suitable Itô's stochastic differential equation, which can be regarded as the weak limit of the above stochastic ordinary equation. Indeed, we will see in Theorem 1 that setting $X_t^e(x) = \int_0^t F_e(s, x) ds$, the pair (ϕ_t^e, X_t^e) converges weakly to (ϕ_t, X_t) , where ϕ_t is a diffusion process mentioned above and X_t is a Brownian motion with values in the space of vector fields. Furthermore, these two processes are linked by Itô's stochastic differential equation