Saito, T. Osaka J. Math. **21** (1984), 859-881

SHARP ESTIMATES FOR THE $\bar{\partial}$ **-NEUMANN PROBLEM AND THE** $\overline{\partial}$ **-PROBLEM**

TETSUO SAITO

(Received October 20, 1983)

0. Introduction

The object of this paper is to establish some estimates for the second order derivatives of the solution of the $\overline{\partial}$ -Neumann problem. Similar estimates were obtained by Greiner-Stein [2] when the Levi form is non-degenerate and the metric is a Levi metric. In this article we derive such results merely assuming that the basic estimate (0.2) below holds; the metric may be an arbitrary hermitian metric and we permit some cases where the Levi form is degenerate.

We begin with recalling what the $\bar{\partial}$ -Neumann problem is. Let M be a bounded domain in $Cⁿ$ with C^{∞} -boundary bM . We denote the vector bundle consisting of type $(1,0)$ vectors by S, and the space of smooth (p, q) -forms on \overline{M} by $\hat{\alpha}^{p,q}(\overline{M})$. If we write a (p, q) -form ϕ as $\sum_{I, J}^{\prime} \phi_{I, J} dz^I \Lambda \overline{z}^I$, then the $\overline{\partial}$ operator is defined by

$$
\overline{\partial}\phi = \sum_{I,J} \sum_{j=1}^n \frac{\partial \phi_{I,J}}{\partial \overline{z}_j} d\overline{z}_j \Lambda dz^I \Lambda d\overline{z}^J ,
$$

where $\{z_1, \dots, z_n\} = \{x_1 + \sqrt{-1}y_1, \dots, x_n + \sqrt{-1}y_n\}$ is the canonical coordinate system of C^n , $\partial/\partial z_j = \frac{1}{2} (\partial/\partial x_j - \sqrt{-1}\partial/\partial y_j)$, $j=1, \dots, n$, and the notation Σ' means that the summation is taken over strictly increasing p-tuples I and qtuples *J* of $(1, \dots, n)$. Let $D^{p,q}$ denote the totality of the smooth (p, q) -forms φ on \overline{M} such that $(\psi, \vartheta \phi) = (\overline{\partial} \psi, \phi)$ holds for each $\psi \in \mathcal{X}^{\rho,q-1}(\overline{M})$, where ϑ is the formal adjoint of $\overline{\partial}$ and (,) the L^2 -inner product on M. We consider the following variational problem: given $\lambda \in \mathbb{C}$ and $f \in \mathbb{C}^{p,q}(\overline{M})$ arbitrarily, find $u \in D^{p,q}$ such that

$$
(0.1)_{\lambda} Q(u, \phi) + \lambda(u, \phi) = (f, \phi) \quad \text{for any } \phi \in D^{p,q},
$$

where $Q(\phi, \psi) = (\overline{\partial}\phi, \overline{\partial}\psi) + (\partial\phi, \psi + (\phi, \psi))$. This problem is equivalent to the following boundary value problem:

$$
(0.1)_{\lambda}' \qquad (\Box + \lambda + 1)u = f \text{ in } M, u \in D^{p,q}, \overline{\partial} u \in D^{p,q+1},
$$