Saito, T. Osaka J. Math. 21 (1984), 859–881

SHARP ESTIMATES FOR THE $\overline{\partial}$ -NEUMANN PROBLEM AND THE $\overline{\partial}$ -PROBLEM

Tetsuo SAITO

(Received October 20, 1983)

0. Introduction

The object of this paper is to establish some estimates for the second order derivatives of the solution of the $\overline{\partial}$ -Neumann problem. Similar estimates were obtained by Greiner-Stein [2] when the Levi form is non-degenerate and the metric is a Levi metric. In this article we derive such results merely assuming that the basic estimate (0.2) below holds; the metric may be an arbitrary hermitian metric and we permit some cases where the Levi form is degenerate.

We begin with recalling what the $\overline{\partial}$ -Neumann problem is. Let M be a bounded domain in \mathbb{C}^n with \mathbb{C}^∞ -boundary bM. We denote the vector bundle consisting of type (1,0) vectors by S, and the space of smooth (p, q)-forms on \overline{M} by $\mathfrak{C}^{p,q}(\overline{M})$. If we write a (p, q)-form ϕ as $\sum_{I,J}' \phi_{I,J} dz^I \Lambda \overline{z}^I$, then the $\overline{\partial}$ operator is defined by

$$\overline{\partial}\phi = \sum_{I,J}' \sum_{j=1}^{n} \frac{\partial \phi_{I,J}}{\partial \overline{z}_{j}} d\overline{z}_{j} \Lambda dz^{I} \Lambda d\overline{z}^{J} ,$$

where $\{z_1, \dots, z_n\} = \{x_1 + \sqrt{-1}y_1, \dots, x_n + \sqrt{-1}y_n\}$ is the canonical coordinate system of C^n , $\partial/\partial z_j = \frac{1}{2} (\partial/\partial x_j - \sqrt{-1}\partial/\partial y_j), j=1, \dots, n$, and the notation \sum' means that the summation is taken over strictly increasing *p*-tuples *I* and *q*tuples *J* of $(1, \dots, n)$. Let $D^{p,q}$ denote the totality of the smooth (p, q)-forms ϕ on \overline{M} such that $(\psi, \vartheta \phi) = (\overline{\partial} \psi, \phi)$ holds for each $\psi \in \mathcal{X}^{p,q-1}(\overline{M})$, where ϑ is the formal adjoint of $\overline{\partial}$ and (,) the L^2 -inner product on *M*. We consider the following variational problem: given $\lambda \in C$ and $f \in \mathcal{X}^{p,q}(\overline{M})$ arbitrarily, find $u \in D^{p,q}$ such that

$$(0.1)_{\lambda}$$
 $Q(u, \phi) + \lambda(u, \phi) = (f, \phi)$ for any $\phi \in D^{p,q}$,

where $Q(\phi, \psi) = (\overline{\partial}\phi, \overline{\partial}\psi) + (\vartheta\phi, \vartheta\psi) + (\phi, \psi)$. This problem is equivalent to the following boundary value problem:

$$(0.1)'_{\lambda} \quad (\Box + \lambda + 1)u = f \text{ in } M, u \in D^{p,q}, \,\overline{\partial}u \in D^{p,q+1},$$