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Introduction. In the classical potential theory, O. Frostman [2] in-
vestigated the boundary behavior of the Dirichlet solution Hf for continuous
boundary data/ at an irregular boundary point x of a bounded domain U of R".
And it was revealed that the cluster set of Hf at x is a segment with a possible
exception. In other words, the cluster set of harmonic measures at x has two
extreme points —the Dirac measure Sx and the balayaged measure βζu. A
generalization of this result was given by Constantinescu-Cornea [1] in an
axiomatic setting in a more comprehensive context. Recently, J. Lukes-J.
Maly [6] considered this problem in a relatively compact open subset of a har-
monic space. The present paper is a contribution to this problem under a
resolutive compactification.

Let X be a ^-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification. Let U be
an open set of X. The closure U of U in X* is a resolutive compactification
of £7. Suppose that QU=(0\U) Π^X"Φ0. For a sequence \bk} converging
to x^QU and satisfying 8ξu->εξu, the harmonic measure of U at bk converges
to a measure λ*. If x is irergular for C7, \x enjoyes remarkable properties stated
in Theorem 7, which has a counterpart with the results of Lukes-Mary [6]
and Hyvϋnen [3], and is connected with a version of maximal sequences con-
sidered by Smyrnόlis [7]. In view of the work of Lukes-Maly, we can decide
the structure of the cluster set 37^ of harmonic measures and reveal that the
type of 3Zf is a local property. We can also conclude the same result for the
cluster set of the normalized Dirichlet solutions.

1. Preliminaries

Let X be a ίP-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification of X. We
assume that there exists a function SQ which is bounded superharmonic on X
and inf *0>0. We write Δ=X*\X.


