Nakaoka, M. Osaka J. Math. 21 (1984), 809-815

EQUIVARIANT POINT THEOREMS FOR FIBRE-PRESERVING MAPS

MINORU NAKAOKA

(Received December 9, 1983)

1 Introduction

Let $p: X \to B$ and $p': X' \to B'$ be local trivial fibre spaces with fibre-preserving involutions $T: X \to X$ and $T': X' \to X'$ respectively, and let $f: X \to X'$ be a fibre-preserving map. Denote by A_f the set of equivariant points of f:

$$A_f = \{x \in X; fT(x) = T'f(x)\},\$$

and by \bar{A}_f its orbit space under T. In this paper we shall study $H^*(\bar{A}_f)$ in connection with $H^*(B)$, where H^* is the Čech cohomology with coefficients in Z_2 . Two theorems will be proved by making use of the technique of establishing a transfer homomorphism, which was initiated by Becker and Gottlieb ([1], [2])

In case $p: X \to B$ is an *m*-sphere bundle with the antipodal involution and $p': X' \to B$ is an \mathbb{R}^n -bundle with the trivial involution, Jaworowski gave in [4], [5] the following theorem which is a "continuous" version of the Borsuk-Ulam theorem: If $k=m-n\geq 0$ and the all the Stiefel-Whitney classes of $p': X' \to B$ are zero then the composition

$$H^{i}(B) \xrightarrow{\bar{P}^{*}} H^{i}(\bar{A}_{f}) \xrightarrow{\smile \omega(A_{f})^{k}} H^{i+k}(\bar{A}_{f})$$

is injective for every *i*, where $\bar{p}: \bar{A}_f \rightarrow B$ is induced by $p|A_f$, and $\omega(A_f)$ is the characteristic class of the double covering $A_f \rightarrow \bar{A}_f$. It is seen in this paper that the assumption on the Stiefel-Whitney classes is superfluous in the theorem of Jaworowski.

Throughout this paper we use the Čech cohomology with coefficients in Z_2 .

2 Equivariant fundamental cohomology class

Let $M \to X \xrightarrow{p} B$ be a local trivial fibre space such that both the fibre M and the base B are manifolds without boundary. Suppose that there is given a fibre-preserving involution $T: X \to X$, that is, an involution satisfying pT=T.