ACTIONS OF SYMPLECTIC GROUPS ON A PRODUCT OF QUATERNION PROJECTIVE SPACES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

FUICHI UCHIDA

(Received November 7, 1983)

0. Introduction

We shall study smooth actions of symplectic group Sp(n) on a closed orientable manifold X such that $X \sim P_a(H) \times P_b(H)$, under the conditions: $a+b \leq 2n-2$ and $n \geq 7$. Our result is stated in §2 and proved in §5. Typical examples are given in §1. Similar result on smooth actions of special unitary group SU(n) on a closed orientable manifold X such that $X \sim P_a(C) \times P_b(C)$ is stated in the final section.

Throughout this paper, let $H^*(\)$ denote the singular cohomology theory with rational coefficients, and let $P_n(H)$, $P_n(C)$ and $P_n(R)$ denote the quaternion, complex and real projective *n*-space, respectively. By $X \sim X'$, we mean that $H^*(X) \simeq H^*(X')$ as graded algebras.

1. Typical examples

1.1. We regard S^{4k-1} as the unit sphere of the quaternion k-space H^k with the right scalar multiplication. Let Y be a compact Sp(1) manifold. By the diagonal action, Sp(1) acts freely on the product manifold $S^{4k-1} \times Y$. Here we consider the cohomology ring of the orbit manifold $(S^{4k-1} \times Y)/Sp(1)$ for the case $Y \sim P_b(H)$.

Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/Sp(1) \rightarrow P_{k-1}(H)$. By the Leray-Hirsch theorem, $H^*((S^{4k-1} \times Y)/Sp(1))$ is freely generated by 1, u, u^2, \dots, u^b as an $H^*(P_{k-1}(H))$ module for an element $u \in H^4((S^{4k-1} \times Y)/Sp(1))$. If u can be so chosen as $u^{b+1}=0$, then we see that $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_b(H)$.

Lemma 1.1. Denote by F, the fixed point set of the restricted U(1) action on Y. If $F \sim P_b(C)$, then $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_b(H)$.

Proof. Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/U(1) \rightarrow P_{2k-1}(C)$. We see that $H^*((S^{4k-1} \times Y)/U(1))$ is freely generated by 1, v, v^2, \dots, v^b as an $H^*(P_{2k-1}(C))$ module for an element $v \in H^4((S^{4k-1} \times Y)/U(1))$. We shall show first that