MINIMAL IMMERSIONS OF 3-DIMENSIONAL SPHERE INTO SPHERES

KATSUYA MASHIMO

(Received April 8, 1983) (Revised March 19, 1984)

Introduction

Let S_c^n be the *n*-dimensional sphere with constant curvature c. Let Δ be the Laplace-Beltrami operator on S_1^n . The spectre and eigen-functions of Δ are well-known [2]. Let V^d be the eigen-space of Δ corresponding to the d-th eigen-value $\lambda_d = d(d+n-1)$. Let $f_0, f_1, \dots, f_{m(d)}$ be an orthonormal basis of V^d with respect to the inner product. Then

$$\psi_{n,d} \colon S_{k(d)}^n \to S_1^{m(d)}(\subset \mathbf{R}^{m(d)+1}) ; \ p \to 1/(m(d)+1)(f_0(p), f_1(p), \dots, f_{m(d)}(p)),$$

is an isometric minimal immersion, where k(d) and m(d) are as follows [6];

$$k(d) = n/d(d+n-1)$$
,
 $m(d) = (2d+n-1)(d+n-2)!/d!(n-1)!-1$.

It is proved that any isometric minimal immersion of S_c^2 into S_1^N is equivalent to $\psi_{2,d}$ for some d, [3], [6]. But it is not true if the dimension n is greater than 3. In fact do Carmo and Wallach proved the following

Theorem 0.1 (do Carmo and Wallach, [7]). Let $f: S_c^n \to S_1^N$ be an isometric minimal immersion. Then

- (i) there exists an integer d such that c=k(d).
- (ii) There exists a positive semi-definite matrix A of size $(m(d)+1)\times(m(d)+1)$ such that f is equivalent to $A \circ \psi_{n,d}$.
- (iii) If n=2 or $d \le 3$, then A is the identity matrix.
- (iv) If $n \ge 3$ and $d \ge 4$, then A is parametrized by a compact convex body L in some finite dimensional vector space, dim $L \ge 18$. If A is an interior point of L then N=m(d), and if A is a boundary point of L then N< m(d).

There are some problems concerning (iv) of the above Theorem.