ON THE STRUCTURE OF THE AUGMENTATION QUOTIENTS RELATIVE TO AN N_{o} -SERIES

KAZUNARI SHINYA

(Received January 30, 1984)

1. Introduction

Let G be a group with lower central series $G=G_1\supseteq G_2\supseteq G_3\supseteq \cdots \supseteq G_n\supseteq G_{n+1}\supseteq \cdots$, and define

$$W_n(G) = \sum \bigotimes_{i=1}^n Sp^{a_i}(G_i/G_{i+1})$$
,

where \sum runs over all non-negative integers a_1, a_2, \dots, a_n such that $\sum ia_i = n$, and $Sp^{a_i}(G_i/G_{i+1})$ is the a_i -th symmetric power of the abelian group G_i/G_{i+1} . Let I(G) be the augmentation ideal of G in $\mathbb{Z}G$. We denote by $Q_n(G)$ the additive groups $I^n(G)/I^{n+1}(G)$ for $n \ge 1$. Some results are known about the structure of $Q_n(G)$.

It is well known that $Q_1(G) \simeq W_1(G)$ for any group G. G. Losey [3] proved that $Q_2(G) \simeq W_2(G)$ for any finitely generated group G. Tahara [6], [7] proved that $Q_3(G) \simeq W_3(G)/R_4^*$ and $Q_4(G) \simeq W_4(G)/R_5^*$ hold for any finite group G, where R_4^* and R_5^* are precisely determined subgroups of $W_3(G)$ and $W_4(G)$. Furthermore Sandling and Tahara [5] proved that $Q_n(G) \simeq W_n(G)$ $(n \ge 1)$ if G_i/G_{i+1} is free abelian for any $i \ge 1$.

Let p be a prime number. In the first half of this paper we restrict our attention to groups of exponent p, and prove that

$$Q_n(G) \simeq W_n(G)/R_{n+1} \qquad (n \geq 1)$$
,

where R_{n+1} is a precisely determined subgroup of $W_n(G)$ (Theorem 8). As its corollaries we have a well known result 1), and a new result 2) as follows:

- 1) $D_n(G) = G_n$ for any such group G, where $D_n(G)$ is the *n*-th dimension subgroup of G (Corollary 9).
 - 2) Let G be a finite group with lower central series

$$G = G_1 \supseteq G_2 \supseteq \cdots \supseteq G_c \supseteq G_{c+1} = 1$$
.

If this series is an N_p -series then $Q_n(G) \simeq W_n(G)$ for n < p (Remark 12).

In the latter half we prove that $Q_p(G) \simeq W_p(G)$ if the lower central series of G is an N_p -series (Theorem 13). Furthermore we construct a subgroup