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Introduction

Let R be an arbitrary ring and let M be a finitely generated right jR-module.
Then the dual module M *=HomR(M, R) of M is a left Λ-module. If R is
a left noetherian ring or finite dimensional algebra, then M* is also finitely
generated. But this property does not hold for a general ring. However,
we prove that R has this property if R is a regular right self-injective ring (Pro-
position).

The purpose of this paper is to prove the following theorems.

Theorem 1. Let R be a regular ring. Then the following statements are
equivalent.
1) R is a right and left self-injective ring.
2) For every finitely generated non-singular right (resp. left) R-module, the dual
module is a non-zero finitely generated left (resp. right) R-module.

In particular, if R is a commutative regular ring, then we have the follow-
ing theorem.

Theorem 2. Let R be a commutative regular ring. Then the following
conditions are equivalent.
1) R is a self-injective ring.
2) For every finitely generated R-module, the dual module is also finitely generated.

Throughout this paper, we assume that R is a ring with identity element
and all modules are unitary. We denote the maximal right quotient ring of
RbyQ.

Let M be a right 72-module. Then we denote the right (resp. left) an-
nihilator ideal by r(M) (resp. /(M)), i.e. r(M)={r(=R\Mr=Q}, (resp. l(M) =
{r(ΞR\rM=Q}).

We denote the category of right 12-modules by Mod-7?. Let M be a right
.R-module. Then M is said to be a cogenerator in Mod-/? if Homj?(—, R) is
a faithful functor. In particular, if R is an injective cogenerator in Mod-Λ,
then R is said to be a right PF-ήng.


