Sumioka, T. Osaka J. Math. 21 (1984), 629–648

TACHIKAWA'S THEOREM ON ALGEBRAS OF LEFT COLOCAL TYPE

Dedicated to Professor Hirosi Nagao on his 60th birthday

TAKESHI SUMIOKA

(Received December 14, 1982)

Introduction

Let A be an artinian ring. Then A is said to be of right local type if any finitely generated indecomposable right A-module M is local (i.e. M has a unique maximal submodule) and a ring of left colocal type is defined as the dual notion. We say A is left serial if a left A-module A is a direct sum of uniserial submodules. Tachikawa [4, 5] gave characterizations of algebras of right local (or equivalently of left colocal) type.

Theorem (Tachikawa). For a finite dimensional algebra A with the Jacobson radical N, the following conditions (a)–(d) are equivalent.

- (a) A is of right local type.
- (b) A is of left colocal type.
- (c) (c_1) A is left serial.

(c₂) For any uniserial left A-modules L_1 and L_2 with $|L_1| \le |L_2|$, any isomorphism $\theta: S_1(L_1) \rightarrow S_1(L_2)$ is (L_1, L_2) -maximal or (L_1, L_2) -extendible (see Section 1 for the definitions), where $|L_i|$ is the composition length of L_i and $S_1(L_i)$ is the socle of L_i for i=1, 2.

(c₃) $|eN/eN^2| \leq 2$ for any primitive idempotent e of A.

(d) (d_1) A is left serial.

(d₂) $eN = M_1 \oplus M_2$ for any primitive idempotent e of A, where M_i is either zero or a uniserial submodule of the right A-module eN for each i=1, 2.

More precisely Tachikawa [4] gave a proof of the equivalence of (b) and (c) for *any* artinian ring. But in the proof of the implication from (c) to (b), there were two gaps. He himself pointed out one of them, namely [4, Lemma 4.9], and informed Fuller of it and that the lemma holds for any artinian ring under a suitable assumption (D) which is satisfied for any finite dimensional algebra over a field (cf. Section 3 for the definition of (D). See also Fuller [3, Note p. 165].). Now the other one (which is related to [4, Corollary 4, 6])