SOME REMARKS ON THE CAUCHY PROBLEM FOR SCHRÖDINGER TYPE EQUATIONS

WATARU ICHINOSE

Dedicated to the memory of Professor Hitoshi Kumano-go

(Received March 31, 1983)

0. Introduction

In the present paper we consider the Cauchy problem for the following equation

(0.1)
$$Lu \equiv (i\partial_t + \tau \Delta + \sum_{j=1}^m b_j(x)\partial_{x_j} + c(x))u(x,t) = 0$$

with initial data $u_0(x)$ at t=0, where τ is a constant such that $0 \le \tau \le 1$, and $b_j(x)$, c(x) belong to $\mathcal{B}^{\infty}(R_x^m)$. $\mathcal{B}^{\infty}(R_x^m)$ denotes the set of C^{∞} -functions whose derivatives of any order are all bounded. If τ is positive, the above equation (0.1) is the typical equation of non-kowalewskian type which is not parabolic. The study of the equation (0.1) is important for the study of equations of general non-kowalewskian type.

For real s let H_s be the Sobolev space with the usual norm $\|\cdot\|_s$ and let $H_\infty \equiv \bigcap_{s \in \mathbb{R}} H_s$ be the Fréchet space with semi-norms $\|\cdot\|_s$, $s=0, \pm 1, \pm 2, \cdots$. We say that the Cauchy problem for (0.1) is well posed for the future (resp. for the past) in the space H_∞ , if there exists a constant T>0 (resp. T<0) such that for any initial data $u_0(x) \in H_\infty$ a unique solution $u(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ of (0.1), which takes $u_0(x)$ at t=0, exists. Here, $f(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ means that the mapping: $[0, T] \ni t \to f(x, t) \in H_\infty$ is continuous in the topology of H_∞ .

Our purpose is to prove the following theorem corresponding to the so-called Lax-Mizohata theorem for equations of kowalewskian type (Lax [5], Mizohata [6]).

Theorem. In order that equation (0.1) is well posed for the future or for the past in the space H_{∞} , it is necessary that there exist constants M and N such that the inequality

$$(0.2) \qquad \sup_{x \in \mathbb{R}^m, \omega \in \mathbb{R}^{m-1}} \left| \sum_{j=1}^m \int_0^\rho \operatorname{Re} b_j(x + 2\tau \theta \omega) \omega_j d\theta \right| \leq M \log(1+\rho) + N$$

holds for any $\rho \ge 0$. S^{m-1} denotes the unit sphere in R^m .