Morita, S. Osaka J. Math. 21 (1984), 545-563

NONTRIVIALITY OF THE GELFAND-FUCHS CHARACTERISTIC CLASSES FOR FLAT S'-BUNDLES

Shigeyuki MORITA¹⁾

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

(Received September 12, 1983)

1. Introduction

Motivated by the work of Gelfand and Fuchs [2], Bott and Haefliger (see [4]) have defined homomorphisms

$$\overline{\Phi} \colon H^*(\mathcal{L}_{S^1}) \to H^*(B\overline{\mathrm{Diff}}_+(S^1); \mathbf{R}) \Phi \colon H^*(\mathcal{L}_{S^1}, so(2)) \to H^*(B\mathrm{Diff}_+(S^1)^{\delta}; \mathbf{R})$$

where \mathcal{L}_{S^1} is the topological Lie algebra consisting of all C^{∞} vector fields on S^1 , $H^*(\mathcal{L}_{S^1})$ is its continuous cohomology (=the Gelfand-Fuchs cohomology of S¹) and $H^*(\mathcal{L}_{S^1}, so(2))$ is the continuous cohomology of \mathcal{L}_{S^1} relative to the subalgebra $so(2) \subset \mathcal{L}_{S^1}$. Diff₊(S¹) is the topological group of all orientation preserving C^{∞} diffeomorphisms of S^1 and $B\overline{\text{Diff}}^+(S^1)$ (resp. $B\text{Diff}_+(S^1)^{\delta}$) is the classifying space for the topological group $\overline{\text{Diff}}_+(S^1)$ (=homotopy theoretical fibre of the forgetful homomorphism $\text{Diff}_+(S^1)^{\delta} \to \text{Diff}_+(S^1)$, here δ denotes the discrete topology) (resp. $\text{Diff}_+(S^1)^{\delta}$). $B\overline{\text{Diff}}_+(S^1)$ (resp. $B\text{Diff}_+(S^1)^{\delta}$) classifies foliated S^1 -products (resp. foliated S^1 -bundles) (see [17]). Gelfand and Fuchs [2] have proved that $H^*(\mathcal{L}_{S^1})$ is a free graded algebra with two generators α of degree 2 and β of degree 3 and it follows that $H^*(\mathcal{L}_{S^1}, so(2)) = \mathbf{R}[\alpha, \chi]/(\alpha \chi)$ where χ is the Euler class (see [4]). We may call the images of $\overline{\Phi}$ and Φ the Gelfand-Fuchs characteristic classes for flat S¹-bundles. Thurston [16] has constructed examples of foliated S¹-bundles to show that the classes α and χ (we omit the symbols $\overline{\Phi}$ and Φ for simplicity, thus α stands for $\Phi(\alpha)$ for example) are independent and also that all the classes α^n ($n \in N$) vary continuously, namely there are homology classes $\sigma_t \in H_{2n}(BDiff_+(S^1)^{\delta}; \mathbb{Z})$ with $\langle \sigma_t, \alpha^n \rangle = t$ for all $t \in \mathbf{R}$. In this paper we describe an extension of Thurston's argument which proves the nontriviality of the classes $\alpha^{n-1}\beta$ and χ^n $(n \in N)$.

¹⁾ Partially supported by the Sonderforschungsbereich Theoretische Mathematik 40, Universität Bonn.