Matumoto, T. Osaka J. Math. 21 (1984), 489-492

ON A WEAKLY UNKNOTTED 2-SPHERE IN A SIMPLY-CONNECTED 4-MANIFOLD

Такао МАТИМОТО

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

(Received May 27, 1983)

Introduction

The purpose of this note is to present the following criterion for unknotting in a weak sense which gives us a simple geometric proof of Theorem of Kawauchi stated below.

Theorem 1. Let M be a smooth 1-connected 4-manifold and S^2 a smoothly embedded 2-sphere in M. Suppose that $\pi_1(M-S^2) \cong Z$ and $S^2 \cong 0$ in M. Then, S^2 is unknotted in $M\#(\#S^2 \times S^2)$ for some $n \ge 0$.

Here S^2 is called unknotted if there is a smoothly embedded D^3 which is bounded by S^2 . As a corollary we shall give a proof of Theorem of Kawauchi. His original proof uses the partial Poincaré duality associated to infinite cyclic covering (see [3], [4] and Suzuki [9, Th. 8.6]). Other proofs are founded in [1], [8] and [10].

Corollary (Theorem of Kawauchi). Let S^2 be a smoothly embedded 2-sphere in the 4-sphere S^4 . Suppose that $\pi_1(S^4-S^2)\cong Z$. Then, it is algebraically unknotted, i.e. $S^4-S^2\cong S^1$.

Is a smooth 2-knot with $\pi_1(S^4-S^2) \cong Z$ unknotted? This is a unsolved question. We stabilize the problem by making connected sum of the ambient manifold with $\#(S^2 \times S^2)$ and another stabilization may be done by making connected sum of the embedded manifold S^2 with trivially embedded $\#(S^1 \times S^1)$. There is a result due to [2].

Theorem 2 (Hosokawa-Kawauchi [2]). Under the same assumption of Theorem 1, S^2 surgered by attaching n trivially embedded 1-handles is unknotted in M for some $n \ge 0$.

We refer the reader to [ibid] for the precise meaning of trivial (=trivially embedded) 1-handles and unknottedness of surfaces. We shall give also a