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Introduction

The purpose of this note is to present the following criterion for unknotting
in a weak sense which gives us a simple geometric proof of Theorem of Kawa-
uchi stated below.

Theorem 1. Let M be a smooth I-connected 4-manifold and S2 a smoothly
embedded 2-sphere in M. Suppose that ^(M-S2)^Z and S2—0 in M. Then, S2

is unknotted in M% (#S2 X S2) for some n 2^0.

Here S2 is called unknotted if there is a smoothly embedded D3 which
is bounded by S2. As a corollary we shall give a proof of Theorem of Kawa-
uchi. His original proof uses the partial Poincare duality associated to in-
finite cyclic covering (see [3], [4] and Suzuki [9, Th. 8.6]). Other proofs are
founded in [1], [8] and [10].

Corollary (Theorem of Kawauchi). Let S2 be a smoothly embedded 2-
sphere in the ^-sphere S4. Suppose that ^(S*—S2)^Z. Then, it is algebraically
unknotted, i.e. S*—S2—S\

Is a smooth 2-knot with TΓ^S4— S2)^Z unknotted? This is a unsolved
question. We stabilize the problem by making connected sum of the ambient
manifold with $(S2xS2) and another stabilization may be done by making
connected sum of the embedded manifold S2 with trivially embedded ^(S1

X S1). There is a result due to [2].

Theorem 2 (Hosokawa-Kawauchi [2]). Under the same assumption of
Theorem 1, S2 surgered by attaching n trivially embedded l-handles is unknotted

in M for some n^O.

We refer the reader to [ibid] for the precise meaning of trivial (=trivially
embedded) l-handles and unknottedness of surfaces. We shall give also a


