Pizer, A. Osaka J. Math. 21 (1984), 461-472

MATRICES OVER GROUP RINGS WHICH ARE ALEXANDER MATRICES⁽¹⁾

Adrian PIZER

(Received November 16, 1982) (Revised September 21, 1983)

Introduction

Let $(x_1, \dots, x_m; r_1, \dots, r_n)$ be a presentation of a group G. Then an Alexander matrix of G can be obtained by mapping the $n \times m$ matrix $(\partial r_i / \partial x_j)$ into a matrix with coefficients in the group ring JH of some homomorphic image H of G. (We are using *i* for the row index and *j* for the column index. Moreover, what we call Alexander matrices are called in Fox [4] 'Homomorphisms of the Jacobian'.) In this note, we consider the reverse of the above procedure. We start with a matrix A over a group ring, and look for groups with an Alexander matrix equal to A.

Let F be the free group on the set of m letters $\{x_1, \dots, x_m\}$, and JF be the integral group ring on F. Let $\chi: F \to H$ be an epimorphism from F onto a group H, and let $\tilde{\chi}: JF \to JH$ be the extension of χ to group rings. Then for an $n \times m$ matrix A with entries \tilde{f}_i^i over JH, if G is such that

$$F \xrightarrow{\chi} H$$

$$\phi \bigvee / \psi$$

$$G$$

commutes and $(\partial r_i/\partial x_j)^{\tilde{\mathbf{x}}} = A$, we say *G* realizes *A* w.r.t. \mathbf{X} . Here ϕ is the canonical projection, and ψ is the epimorphism induced by \mathbf{X} . Let *R* denote Ker \mathbf{X} . We show

Theorem I. Given an $n \times m$ matrix A with entries \tilde{f}_{j}^{i} over JH, there is a group G realizing A w.r.t. χ iff $\sum_{j=1}^{m} \tilde{f}_{j}^{i} \tilde{\chi}(x_{j}-1)=0$, $i=1, \dots, n$. Further if the entries of A satisfy this condition and G is a group with presentation $(x_{1}, \dots, x_{m}:$ $r_{1}, \dots, r_{n})$ such that $(\partial r_{i}/\partial x_{j})^{\chi} = A$, the collection of all groups realizing A w.r.t χ is

 $\{(x_1, \dots, x_m; a_1r_1, \dots, a_nr_n) | a_1, \dots, a_n \in [R, R]\}$.

⁽¹⁾ Submitted as part of the requirements for the degree of Master of Science at Osaka City University, March 1983.