A REMARK ON ODD-PRIMARY COMPONENTS OF SPECIAL UNITARY GROUPS

Dedicated to Professor Minoru Nakaoka on his 60th birthday

HARUO MINAMI

(Received March 9, 1983)

Let G be a compact connected Lie group of dimension d>0, and let us assume that an orientation of G is chosen. Let $\mathfrak L$ denote the left invariant framing of the tangent bundle of G. For the pair $(G, \mathfrak L)$ we obtain by the Pontrjagin-Thom construction an element $[G, \mathfrak L]$ in π_d^s . Ossa[6] proved that $72[G, \mathfrak L]=0$. Of course this implies that the p-primary component of $[G, \mathfrak L]$ is zero for any prime p>3. As for information on the 3-primary part of general nature we have the following results of Becker-Schultz: For G=SO(2n), Spin(2n) or U(n) the 3-primary component of $[G, \mathfrak L]$ is zero [2]. For the exceptional Lie groups Knapp[4] proved that the 3-primary component of $[F_4, \mathfrak L]$ is zero. In this note we give the following additional information:

*) For $n \equiv 0$ or 3 mod 4 the 3-primary component of $[SU(n), \mathfrak{L}]$ vanishes.

Let τ be an involutive automorphism of G and let K denote the closed subgroup of G consisting of all elements fixed by τ . Then using the equivariant stable homotopy theory for involutions, we have

Proposition 1. If K is of odd codimension in G, then

$$[G, \mathfrak{L}]_{(add)} = 0$$

where $a_{(odd)}$ denotes the odd-primary part of a.

The assertion *) is an immediate corollary of this proposition. According to the classification theorem of irreducible Riemannian symmetric spaces, examples of Lie groups to which this proposition applies are SU(4n), SU(4n+3), Spin(2n) and SO(2n). For SU(n) (resp. Spin(n+1) and SO(n+1)) we adopt the involutive automorphism corresponding to the symmetric space of AI-type (resp. of BDII-type), whose fixed point set is of codimension (n-1) (n+2)/2 (resp. n).

In the final section we make a remark on the real Adams e-invariant e'_R and we show