Kobayashi, T. Osaka J. Math. 21 (1984), 437-455

STRUCTURES OF THE HAKEN MANIFOLDS WITH HEEGAARD SPLITTINGS OF GENUS TWO

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

TSUYOSHI KOBAYASHI

(Received March 5, 1983)

1. Introduction

In this paper we will give a complete list of the closed, orientable 3manifolds with Heegaard splittings of genus two and admitting non-trivial torus decompositions. We use the following notations.

- D(n) (A(n), Mö(n) resp.): the collection of the Seifert fibered manifolds the orbit manifold of each of which is a disk (annulus, Möbius band resp.) with n exceptional fibers.
- M_{K} (M_{L} resp.): the collection of the exteriors of the two bridge knots (links resp.).
- L_{κ} : the collection of the exteriors of the one bridge knots in lens spaces each of which admits a complete hyperbolic structure or admits a Seifert fibration whose regular fiber is not a meridian loop.

For the definitions of the one bridge knots in lens spaces see section 5. Then our main result is

Theorem. Let M be a closed, connected Haken manifold with a Heegaard splitting of genus two. If M has a nontrivial torus decomposition then either

- (i) M is obtained from $M_1 \in D(2)$ and $M_2 \in L_K$ by identifying their boundaries where the regular fiber of M_1 is identified with the meridian loop of M_2 ,
- (ii) M is obtained from $M_1 \in M \ddot{o}(n)$ (n=0, 1 or 2) and $M_2 \in M_K$ by identifying their boundaries where the regular fiber of M_1 is identified with the meridian loop of M_2 ,
- (iii) M is obtained from $M_1 \in D(n)$ (n=2 or 3) and $M_2 \in M_K$ by identifying their boundaries where the regular fiber of M_1 is identified with the meridian loop of M_2 ,
- (iv) M is obtained from M_1 , $M_2 \in D(2)$ and $M_3 \in M_L$ by identifying their boundaries where the regular fiber of M_i (i=1, 2) is identified with the meridian loop of M_2 or
- (v) M is obtained from $M_1 \in A(n)$ (n=0, 1 or 2) and $M_2 \in M_L$ by ident-