LOCALIZATION OF BP-MODULE SPECTRA WITH RESPECT TO BP-RELATED HOMOLOGIES

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received September 17, 1982)

1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p. It is an associative and commutative ring spectrum whose homotopy is $BP_*=Z_{(p)}[v_1,\cdots,v_n,\cdots]$. Following Ravenel [9] we denote by L_n the localization with respect to $v_n^{-1}BP_*$ -homology and by L_∞ that with respect to $v_n^{-1}BP_*$ -homology. Then there is a tower

$$X \to L_{\infty}X \cdots \to L_{n}X \to L_{n-1}X \to \cdots \to L_{0}X$$

for each CW-spectrum X. A CW-spectrum X is said to be harmonic if $X = L_{\infty}X$, and s-harmonic if $X = \hat{L}_{\infty}X$ where we put $\hat{L}_{\infty}X = \varprojlim_{n} L_{n}X$. X is

harmonic whenever it is s-harmonic. In this paper we study some properties of s-harmonic spectra. Especially we discuss $\hat{L}_{\infty}E$ when E is an associative BP-module spectrum which satisfies one or two of the following conditions:

- I) E_* is v_m -torsion for any m < n,
- II) E_* is v_m -torsion for any m > n,
- III) $BP_*/I_m \underset{RP_m}{\otimes} E_*$ is v_m -torsion free for any $m \leq n$,
- IV) $\operatorname{Tor}_{m}^{BP*}(BP_{*}|I_{m}, E_{*})$ is v_{m} -divisible for any m < n, and
- V) hom $\dim_{BP_*}E_* \leq n$.

As such associative *BP*-module spectra we have P(n), k(n), $BP\langle n \rangle$, N_nBP and so on.

We show that an associative BP-module spectrum E is s-harmonic if hom $\dim_{BP_*} E_*$ is finite (Theorem 4.8). This implies Ravenel's result ([9, Theorem 4.4] or [6, Theorem 1.3]) that a p-local connective CW-spectrum X is harmonic if hom $\dim_{BP_*} BP_*X$ is finite (Corollary 4.9). However the finiteness assumption is not necessarily essential because $L_{\infty}BP \langle n \rangle$ is s-harmonic although hom $\dim_{BP_*} L_{\infty}BP \langle n \rangle_*$ is infinite for $n \geq 1$ (Proposition 4.12).

We intend to describe elementary properties of s-harmonic spectra corresponding to those of harmonic spectra. The product of harmonic spectra is