Okado, M. and Oshiro, K. Osaka J. Math. 21 (1984), 375-385

REMARKS ON THE LIFTING PROPERTY OF SIMPLE MODULES

MORIHIRO OKADO AND KIYOICHI OSHIRO

(Received February 8, 1983)

Throughout this paper, we assume that R is an associative ring with identity and $\{M_{\boldsymbol{\omega}}\}_I$ is an infinite set of completely indecomposable right R-modules. We put $M = \sum_{I} \bigoplus M_{\boldsymbol{\omega}}$ and $\overline{M} = M/J(M)$, where $J(M) (= \sum_{I} \bigoplus J(M_{\boldsymbol{\omega}}))$ denotes the Jacobson radical of M.

If each M_{α} is a cyclic hollow module, then \overline{M} is completely reducible. In this case, M is said to have the lifting property of simple modules modulo the radical if every simple submodule of \overline{M} is induced from a direct summand of M ([3]). On the other hand, for the family \mathcal{M} of all maximal submodules of M, M is said to have the *lifting property of modules for* \mathcal{M} if every member A in \mathcal{M} is co-essentially lifted to a direct summand of M, that is, there exists a decomposition $M = A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M ([5]). These two concepts are both dual to 'extending property of simple modules' mentioned in [4]. Therefore, we must observe whether these two lifting properties coincide or not. In this paper, we study this problem and show the following result: M has the lifting property of modules for \mathcal{M} if and only if it has the lifting property of simple modules modulo the radical and satisfies the following condition: For any $\{M_{\boldsymbol{\omega}_i}\}_{i=1}^{\infty} \subseteq \{M_{\boldsymbol{\omega}}\}_I$ and epimorphisms $\{f_i: M_{\boldsymbol{\omega}_i} \rightarrow M_{\boldsymbol{\omega}_{i+1}}\}_{i=1}^{\infty}$, there exist n (depending on the sets) and epimorphism $g: M_{\omega_{n+1}} \rightarrow M_{\omega_n}$ such that $\bar{g} = \bar{f}_n^{-1}$, where \bar{g} and \bar{f}_n are the induced isomorphisms: $\bar{M}_{\sigma_{n+1}} \rightarrow \bar{M}_{\sigma_n}$ and $\bar{M}_{\sigma_n} \rightarrow \bar{M}_{\sigma_n}$ $\overline{M}_{\omega_{n+1}}$, respectively (Theorem 10).

NOTATION. By P(M) we denote the set of all submodules X of M such that $X \cap M_{\sigma} \neq M_{\sigma}$ for all $\alpha \in I$ and $X = \sum_{I} \bigoplus (X \cap M_{\sigma})$.

We first show

Theorem 1. The following conditions are equivalent:

1) For any pair $\alpha, \beta \in I$, every epimorphism from M_{α} to M_{β} is an isomorphism.

2) Let $\{A_{\beta}\}_{J}$ be a family of indecomposable direct summands of M. If $A_{\beta_{1}} + \cdots + A_{\beta_{n}} + X \equiv A_{\beta_{n+1}}$ for any $X \in P(M)$ and any finite subset $\{\beta_{1}, \dots, \beta_{n+1}\}$