Asashiba, H. Osaka J. Math. 21 (1984), 327-342

ON ALGEBRAS OF SECOND LOCAL TYPE, I

HIDETO ASASHIBA

(Received December 20, 1982)

Throughout this paper, A denotes a (left and right) artinian ring with identity 1, J its Jacobson radical and all modules are (unital and) finitely generated.

Let *n* be any natural number. Then we say that *A* is of *right n-th local* type in case for every indecomposable right *A*-module *M*, the *n*-th top top^{*n*}*M*: $=M/MJ^n$ of *M* is indecomposable. (Note that if top^{*n*}*M* is indecomposable, then so is *M* since *A* is artinian and *M* is finitely generated.) Hence for such a ring *A*, the question of indecomposability of right *A*-modules can be reduced to the corresponding problem of right A/J^n -modules. In [11] H. Tachikawa has studied the case n=1 and obtained a necessary and sufficient condition for algebras (by algebra we always mean a finite dimensional algebra over a field *k*) to be of this type. Further the representation theory of algebras with square-zero radical is well known [5], [6], [7]. So in this paper, we examine the case n=2 and give some necessary conditions for rings with selfduality to be of this type. Further in particular for QF (=quasi-Frobenius) rings, we give necessary and sufficient conditions to be of this type. More precisely, we show the following two theorems:

Theorem 1. Let A be a ring with selfduality which is of right 2nd local type and e any primitive idempotent in A. Then

(1) J^2e is a uniserial waist in Ae if $J^2e \neq 0$ (see section 2 for definition of a waist),

(2) eJ^m is a direct sum of local modules for every $m \ge 2$,

(3) for each local direct summand L of eJ^2 , LJ^2 is uniserial (thus eJ^4 is a direct sum of uniserial modules).

Further if A is an algebra, we have

(4) Ae is uniserial if $h(Ae) \ge 5$.

In particular if the base field k is, in addition, an algebraically closed field, then

(5) Ae is uniserial if $h(Ae) \ge 4$,

and then

(6) eJ^2 is a direct sum of uniserial modules.