ON THE SET OF REGULAR BOUNDARY POINTS

Kirsti OJA

(Received February 3, 1983)

Introduction

Let X be a \mathcal{L} -harmonic space with a countable base in the sense of the axiomatics of Constantinescu and Cornea [3], U an open set of X and U_{reg} the set of regular boundary points of U. If X is a connected Brelot space, it is known that U_{reg} is dense on $\partial \bar{U}$ (see e.g. Hervé [4], Ikegami [6]). This is not valid for more general hamonic spaces. We prove two results related to this question. Assuming that the space has a base of regular sets, we obtain a necessary condition (by means of absorbent sets) for the case that U_{reg} is not dense on $\partial \bar{U}$.

1. Preliminaries

Let X be a \mathcal{P} -harmonic space with a countable base in the sense of Constantinescu and Cornea [3] and U an open set of X. We denote the set of regular (resp. irregular) points of ∂U by U_{reg} (resp. U_{ir}). If U is relatively compact and $M \subset \partial U$ with $\mu_x^U(M) = 0$ for all $x \in U$, M is called *negligible*. Since X has a countable base, if M is negligible, $\bar{H}_{x_M}^U(x) = \mu_x^U(M) = 0$ for all $x \in U$ (cf. [2, Satz 4.1.7]).

REMARK 1.1. Let $y \in \partial U$. A strictly positive hyperharmonic function u defined on the intersection of U and an open neighbourhood V of y is called a barrier at y if

$$\lim_{\sigma \, \cap \, \mathcal{V} \ni z \to y} u(z) = 0.$$

Then $y \in U_{reg}$ if and only if there exists a barrier at y. This follows from [3, Proposition 2.4.7], [3, Theorem 6.3.3] and [3, Proposition 7.2.2]. Thus $y \in U_{reg}$ implies that for every open subset U' of U with $y \in \partial U'$, we have $y \in U'_{reg}$.

A relatively compact open set U is called a *Keldyš set*, if U_{ir} is negligible [8, Proposition 2].

The following result was proved by Lukeš and Netuka [9, Theorem 3]: Let U be an open set of X. If K is an arbitrary compact set of U, there is a Keldyš set V with $K \subset V \subset \overline{V} \subset U$.