Mohri, M. Osaka J. Math. 21 (1984), 225-237

QUASICONFORMAL METRIC AND ITS APPLICATION TO QUASIREGULAR MAPPINGS

MASAYUKI MOHRI

(Received September 14, 1982) (Revised May 21, 1983)

The quasiconformal metric introduced by Kuusalo [5] seems to me useful for studying the n -dimensional quasiregular mappings but has not ever been fully utilized in these connections except what are found in V.M. Gol'dstein-S.K. Vodop'yanov [2] and H. Tanaka [14].

In this paper we shed light on some features of quasiconformal metrics on subdomains of \bar{R}^* and apply those to quasiregular mappings to obtain several important properties of them, among others, a characterization for quasiregu larity which comes to a generalization of the result in O. Martio, S. Rickman and J. Vaisala [6, Theorem 7.1]. Most of the statements in the sequel remain to hold in \bar{R}^n , but we often confine ourselves to R^n in order to avoid inessential complexities in technique.

1. Notations and terminologies

 R^n ($n \ge 2$): the *n*-dimensional euclidean space.

 \overline{R} ⁿ: the one point compactification of R ⁿ.

 m_a : the α -dimensional Hausdorff measure.

 $m=m_n$: the *n*-dimensional Lebesgue measure.

q: the spherical metric.

For a point $x \in \mathbb{R}^n$, the coordinates of *x* are denoted by x^1, \dots, x^n and $|x|$ is the euclidean norm.

Let *E* be a subset of \bar{R}^n , then \bar{E} , ∂E , E^c denote the closure, the boundary, the complement of E respectively, all taken with respect to \bar{R}^n .

Given two sets $E, F \subset R^n$, $d(E, F)$ is the euclidean distance between E and *F, d(E)* is the euclidean diameter of *E* and $E\backslash F$ is the set-theoretical difference.

Suppose given a non-empty compact proper subset E of \bar{R}^n and an open set $G \subset \bar{R}^n$, including E , then we call the pair $(E,\,G)$ a condenser and we may define the (conformal) capacity cap (E, G) as the (conformal) modulus of the family of all paths connecting *E* and ∂G in *G* (cf. [3]). If $E = \phi$ or $\partial G = \phi$, then we set cap(E, G)=0.