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0. Introduction

In this paper we let G be a finite group. A. Assadi [2] and R. Oliver-
T. Petrie [6] treated the following question. What is a necessary and sufficient
condition, for given finite G-CW-complexes X and Y and a G-map /: X-+ Yy

to extend / to a quasi-equivalence / ' : X'-> Y (with some reservations) ? Here
a G-map is called a quasi-equivalence if it induces isomorphisms of funda-
mental groups and of integral homology groups. We apply the Oliver-Petrie
theory to covering spaces to give a necessary and sufficient condition so that
we may extend above / to a pseudo-equivalence / " : X"-> Y (with some reser-
vations), when πλ(Y) is finite.

We take Oliver-Petrie [6] as our general reference and use their terms and
notations.

Let 7 be a finite connected G-complex. Then G=πι(EGxGY) acts on
the universal covering space YΌf Y as is shown in section 1 (compare the ac-
tion with that of D. Anderson [1]). Assume nχ{Y) is finite. Then G is finite,
so we have a (?-poset Π=Π(Ϋ) and a G-poset Π=Π(Y). In section 3 we
give a one to one correspondence T from the set of G-families in Π to the
set of (5-families in Π, and an isomorphism v from Ω(G, Π) to Ω(G, Π). A
subgroup 4(G, Y, 3) of J(G, 3) is defined by 4(G, Y, 3)=v(A(G, T(3))).
Under certain conditions Ah(G9 F, 3) agrees with the set

{[Mf]^Ω(G, Π) I/: X-*Y is a pseudo-equivalence such that

X+ is an ΞF-complex}

(see Proposition 4.1), where Mf is the mapping cone of/.
Our main results are:

Theorem 1. Let X be a finite G-complex, Y a finite connected G-complex
with finite ττi(Y), /: X-+Y a skeletal G-map, and 3dΠ any connected G-


