# ON THE INDECOMPOSABILITY OF AMALGAMATED SUMS 

Hideto ASASHIBA

(Received December 20, 1981)

Let $R$ be a semiprimary ring with identity element. In this paper, we study when a factor module of a direct sum of local or colocal $R$-modules of finite length is indecomposable.

Let $(E): 0 \rightarrow K \xrightarrow[i=1]{f} L_{i} \xrightarrow{g} M \rightarrow 0$ be a nonsplit exact sequence of right $R$ modules of finite length and $f_{i}: K \rightarrow L_{i}$ be the $i^{\text {th }}$ coordinate map of $f$ for each $i=1, \cdots, n$. As we will see in the paper, if $M$ is indecomposable, then the following condition holds:
$\left({ }^{*}\right)$ For each $j=1, \cdots, n$ and each $h=\left(h_{i}\right)_{i=1}^{n}: \oplus_{i=1}^{n} L_{i} \rightarrow L_{j}, h f=\sum_{i=1}^{n} h_{i} f_{i}=0$ implies that $h_{i}$ is not an isomorphism for each $i=1, \cdots, n$.

The converse is not true in general, but in Tachikawa [3] we see the converse holds under rather strong conditions. Moreover in [1, section 2], we showed that this converse assertion is still true in the case of each of three groups of weaker conditions than those required in [3]. But in [1, Proposition 2.7], the third group of conditions, we assumed a condition on composition lengths of the $L_{i}$ 's which was not assumed in the other two cases. In this paper, we remove this condition on composition lengths and show that the condition (*) implies the indecomposability of $M$ if each $L_{i}$ is local and colocal, and each $f_{i}$ is a monomorphism (see (3.3)).

In section 1, we consider the fundamental properties of the map $f=\left(f_{i}\right)_{i=1}^{n}$ in the sequence $(E)$ satisfying the condition $\left(^{*}\right)$. Section 2 is a generalization of tools used in [1, section 2] (this generalization is not essential to understanding the main results) and in section 3 we give the main results.

Throughout the paper $R$ is a ring with identity element, $J$ the Jacobson radical of $R$, every module is a unitary right $R$-module. We denote by $\operatorname{Mod} R$ and by $\bmod R$ the category of all $R$-modules and $R$-modules of finite length, respectively. We call an $R$-module $M$ completely indecomposable in case the endomorphism ring $\operatorname{End}_{R}(M)$ is a local ring. For maps $f: K \rightarrow L$ and $g: L \rightarrow M$, and for a decomposition $D: L=\oplus_{I} L_{i}$ of $L$, the notations $(f, D)=\left(f_{i}\right)_{I}^{T}$ and

