Matsuda, T. Osaka J. Math. 20 (1983), 307-320

ASYMPTOTIC PROPERTIES OF POSTERIOR DISTRIBUTIONS IN A TRUNCATED CASE

TADAYUKI MATSUDA

(Received September 21, 1981)

1. Introduction

Let X_1, \dots, X_n be independent random variables with common density $f(x-\theta), -\infty < x, \theta < \infty$, where θ is an unknown translation parameter. We shall consider here the case that f(x) is a uniformly continuous density which vanishes on the interval $(-\infty, 0]$ and is positive on the interval $(0, \infty)$ and particularly

 $f(x) \sim \alpha x$ as $x \to +0$

with $0 < \alpha < \infty$.

Let $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ denote the maximum likelihood estimate of θ for the sample size *n*. Takeuchi [4] and Woodroofe [7] showed that $\sqrt{\frac{1}{2}\alpha n \log n} (\hat{\theta}_n - \theta)$ has an asymptotic standard normal distribution. The speed of convergence to the standard normal distribution has been given as $O((\log n)^{s-1})$ for every fixed $s \in (0, 1)$ by the author [2] (see Theorem 1 below). Moreover, it was shown by Takeuchi [4] and Weiss and Wolfowitz [6] that $\hat{\theta}_n$ is an asymptotically efficient estimator of θ .

Woodroofe [7] also showed that if θ is regarded as a random variable with a prior density, then the posterior probability that $\sqrt{\frac{1}{2}\alpha n \log n} (\theta - \hat{\theta}_n) \in J$ converges to normality $\Phi\{J\}$ in probability for every finite interval J. The purpose of the present paper is to give a refinement of his result. It is shown that the variational distance between the posterior distribution and the standard normal distribution decreases of the order $(\log n)^{-s}$ with probability $1 - O((\log n)^{s-1})$ for every $s \in (0, 1)$. Similar result for minimum contrast estimates in the regular case was given by Strasser [3].

2. Conditions and the main result

We shall impose the following Condition A on f(x) and Condition B on a prior distribution λ .