Furuya, K. Osaka J. Math. 20 (1983), 217-236

ANALYTICITY OF SOLUTIONS OF QUASILINEAR EVOLUTION EQUATIONS II

ΚΙΥΟΚΟ FURUYA

(Received May 15, 1981)

0. Introduction

In this paper we establish analyticity in t of solutions to quasilinear evolution equations

 $(0.1) \quad \frac{du}{dt} + A(t, u)u = f(t, u), \qquad 0 \leq t \leq T,$

$$(0.2) \quad u(0) = u_0 \, .$$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator -A(t, v) is the generator of an analytic semigroup in X and $f(t, v) \in X$. In the case that the domain D(A(t, v)) of A(t, v)does not depend on t and v, Massey [7] discussed analyticity in t for equation of the form (0.1).

In the present paper, we consider analyticity for (0.1), (0.2) under the assumptions that the domain $D(A(t, v)^h)$ of $A(t, v)^h$ is independent of t, v for some h=1/m where m is a positive integer and that $A(t, A_0^{-\alpha}v)^h$ is Hölder continuous in v in the sense that $||A(t, A_0^{-\alpha}v)^hA(t, A_0^{-\alpha}v)^{-h}-I|| \leq C||v-w||^{\eta}$, while in the previous papers [2], [3] we discussed the same problem in the case that $A(t, A_0^{-\alpha}v)^h$ is Lipschtz continuous. In order to prove the theorems we shall make use of the linear theory of Kato [5].

In the following L(X, Y) is the space of linear operators from a normed space X to another normed space Y, and B(X, Y) is the space of bounded linear operators belonging to L(X, Y). L(X) = L(X, X) and B(X) = B(X, X). || || will be used for the norm in both X and B(X); it should be clear from the context which is intended. $\sum (\phi; T) \equiv \{t \in C; |\arg t| < \phi, 0 < |t| < T\} \cup \{0\}$ is the sector in the complex plane.

We shall make the following assumptions:

(A-1) There exist h=1/m, where *m* is an integer, $m \ge 2$, and $0 \le \alpha < h/2$ such that $A_0^{-\alpha}$ is a well-defined operator $\in B(X)$ and $u_0 \in D(A_0^{1+\alpha})$ where $A_0 \equiv A(0, u_0)$. (A-2) A_0^{-1} is a completely continuous operator.