Yosimura, Z. Osaka J. Math. 20 (1983), 123-136

BP OPERATIONS AND HOMOLOGICAL PROPERTIES OF BP_BP-COMODULES

ZEN-ICHI YOSIMURA

(Received April 22, 1981)

BP is the Brown-Peterson spectrum for a fixed prime p and BP_*X is the Brown-Peterson homology of the CW-spectrum X. The left BP_* -module BP_*X is an associative comodule over the coalgebra BP_*BP . In [2] we have studied some torsion properties of (associative) BP_*BP -comodules, by paying attension to the behaviors of BP operations. It seems that the following result is fundamental.

Theorem 0.1. Let M be a BP_*BP -comodule. If an element $x \in M$ is v_n -torsion, then it is v_{n-1} -torsion. ([2, Theorem 0.1]).

After a little while Landweber [8] has obtained several results about torsion properties of associative BP_*BP -comodules in an awfully algebraic manner, as new applications of commutative algebra to the Brown-Peterson homology. In this note we will give directly new proofs of Landweber's principal results [8, Theorems 1 and 2], by making use of two basic tools (Lemmas 1.1 and 1.2) looked upon as generalizations of Johnson-Wilson results [1, Lemmas 1.7 and 1.9] handling BP operations:

Theorem 0.2. Let M be a BP_*BP -comodule and $x \neq 0$ be an element of M. Then the radical of the annihilator ideal of x

 $\sqrt{\operatorname{Ann}(x)} = \{\lambda \in BP_*; \lambda^k x = 0 \text{ for some } k > 0\}$

is one of the invariant prime ideals $I_n = (p, v_1, \dots, v_{n-1})$ in BP_* , $1 \le n \le \infty$. (Theorem 1.3).

Theorem 0.3. Let M be an associative BP_*BP -comodule and $1 \le n < \infty$. If M contains an element x satisfying $\sqrt{\operatorname{Ann}(x)} = I_n$, then there is a primitive element y in M such that the annihilator ideal of y

Ann
$$(y) = \{ \lambda \in BP_*; \lambda y = 0 \}$$

is just I_n . (Theorem 2.2).