Minami, H. Osaka J. Math. 20 (1983), 109-122

ON EQUIVARIANT J-HOMOMORPHISM FOR INVOLUTIONS

HARUO MINAMI

(Received April 17, 1981)

Introduction. Let G be the cyclic group of order 2.

We denote by $\pi_S^{*,*}$ the equivariant stable cohomotopy theory [2, 3] and by KO_G^* the K-theory of real G-vector bundles on G-spaces. For a finite pointed G-complex we then have an equivariant J_G -map $J: \widetilde{KO}_G^{-1}(X) \to \pi_S^{0,0}(X)$ [14], which becomes a homomorphism if X is a suspension in the usual sense.

Let $R^{p,q}$ be the euclidean space R^{p+q} with non trivial G-action on the first p coordinates and $\Sigma^{p,q}$ be the one point compactification of $R^{p,q}$, with ∞ as base point. We have the canonical isomorphism $\pi_{S}^{0,0}(\Sigma^{p,q}) \approx \pi_{p,q}^{S}$, the (p, q)-th equivariant stable homotopy group of Landweber [9, 3] (which is $\pi_{p+q,p}$ of Bredon [5]), and therefore we get an induced map

$$\widetilde{KO}_{G}^{-1}(\Sigma^{p,q}) \rightarrow \pi^{0,0}_{S}(\Sigma^{p,q}) \approx \pi^{S}_{p,q}$$

which we also denote by J_G . P. Löffler [10] showed that if $\widetilde{KO}_G^{-1}(\Sigma^{p,q})$ is a torsion group then J_G is a split injection. In this paper we shall study the image of J_G when $\widetilde{KO}_G^{-1}(\Sigma^{p,q})$ is torsion free. And then we shall give a supplement to [11] on Im J_R . The J_G is also studied by M.C. Crabb [6].

We denote by Z/n a cyclic group of order *n*, by $R \cdot x$ the free module over a ring *R* generated by *x*. If $p \equiv i \mod 8$ and $q \equiv j \mod 8$, then we write $(p, q) \equiv (i, j) \mod 8$.

The author would like to express his gratitude to Professor S. Araki for his kindly advice.

1. The J-homomorphism J_G

In this section we shall give the relations between various homomorphisms and collect some basic tools. Let X be a finite pointed G-complex.

Let KR denote the K-functor of [4]. By regarding a Real vector bundle on X as a real G-vector bundle on X we get a homomorphism $\sigma \colon \widetilde{KR}^{-1}(X) \to \widetilde{KO}_{G}^{-1}(X)$. We define a map $J_{\mathbb{R}} \colon \widetilde{KR}^{-1}(X) \to \pi_{S}^{0,0}(X)$ by

$$(1.1) J_R = J_G a$$