Asai, T. Osaka J. Math. 20 (1983), 21-32

ON THE ZETA FUNCTIONS OF THE VARIETIES X(w) OF THE SPLIT CLASSICAL GROUPS AND THE UNITARY GROUPS

TERUAKI ASAI

(Received April 30, 1981)

0. Introduction

Let G be one of the split classical groups SO_{2n}^* , SO_{2n+1} , Sp_{2n} or a unitary group defined over the finite field F_q of q elements. Let F be the Frobenius mapping, G^F the subgroup of F-stable elements, W the Weyl group of G and let δ be the smallest positive integer such that F^{δ} acts trivially on W. For $w \in W$, Deligne-Lusztig [3] has defined the F^{δ} -stable variety X(w) for any connected reductive group. If w is a Coxeter element of W, the zeta function of X(w) was obtained by Lusztig [9] as a by-product when he determined the Green polynomial associated with w. In this paper we shall determine the zeta function of X(w) for any $w \in W$.

To state our result more explicitly, let B be a fixed F-stable Borel subgroup of G, $\mathfrak{A}^{\kappa}(W)$ the Hecke algebra of the representation of $G^{F^{m}}$ induced from the trivial representation of $B^{F^{m}}$ and let $\{a_{w}^{\kappa}; w \in W\}$ be the natural basis of $\mathfrak{A}^{\kappa}(W)$. When δ divides *m* the number of F^{m} -stable points of X(w) is expressed in terms of the dimensions of the unipotent representations of G^{F} and the trace of a_{w}^{κ} on each irreducible representation of $\mathfrak{A}^{\kappa}(W)$.

The crucial point of our arguments depends on the lifting theory due to Shintani-Kawanaka ([15], [7], [8]) and a result of Lusztig ([12], Corollary 3.9), which says that for any unipotent representation ρ of G^F , the eigenvalues of F^{δ} on the ρ -isotypic component of $H^i_c(X(w))$ are independent of i and w up to a multiple factor of the form $q^{i\delta}$, $i \in \mathbb{Z}$.

Finally the author expresses his heartfelt gratitude to Professor N. Kawanaka for his valuable suggestions and kind encouragement during the preparation of this paper.

1. General results

1.1. First we summarize the known results (Shintani [14], Kawanaka [7], [8]) to apply for our use.

Let m be a positive integer (maybe 1), $k = F_q$, $K = F_{q^m}$, G a connected algebraic