STEFAN PROBLEMS WITH THE UNILATERAL BOUNDARY CONDITION ON THE FIXED BOUNDARY I

SHOJI YOTSUTANI

(Received June 26, 1980) (Revised April 1, 1981)

Contents

0.	Introduction	365
1.	Statements of main results	367
2.	Difference scheme	368
3.	Preliminaries	369
4.	Existence of the unique solution for the difference equation	371
5.	Estimates of the solutions under the condition (A.1)	372
6.	Estimates of the solutions under the condition (A.2)	374
7.	L ² -estimates of the solutions	377
8.	Convergence of the scheme	380
9.	Moving boundary problem	385
10.	Comparison theorems for the moving boundary problem	387
11.	Reformation of the free boundary condition	389
12.	Proof of Theorem 2 and Theorem 4	390
13.	Proof of Theorem 1	392
14.	Proof of Corollary	395
15.	Proof of Theorem 3	395
16.	Appendix	397
	References	402

0. Introduction

This paper is concerned with the following one dimensional one phase Stefan problems with the unilateral boundary condition on the fixed boundary: Given the data, ϕ and l, find two functions s=s(t) and u=u(x, t) such that the pair (s,u) satisfies

(S)
$$\begin{cases} (0.1) \quad Lu \equiv u_{xx} - u_t = 0, & 0 < x < s(t), & 0 < t \le T, \\ (0.2) \quad u_x(0, t) \in \gamma(u(0, t)), & 0 < t \le T, \\ (0.3) \quad u(s(t), t) = 0, & 0 < t \le T, \end{cases}$$