Suyama, Y. Osaka J. Math. 19 (1982), 287-309

HOLOMORPHIC ISOMETRIC IMBEDDING INTO $Q_m(C)$

Yoshihiko SUYAMA

(Received September 8, 1980)

0. Introduction

In this paper, we shall study the existence and rigidity problems of a holomorphic isometric imbedding of a Kaehler manifold into a complex quadric $Q_m(C)$.

A systematic study of the holomorphic isometric imbeddings of Kaehler manifolds with analytic metrics was done by E. Calabi [2]. He considered the so-called diastatic function of a Kaehler manifold and showed that this function plays an important role in study of the holomorphic isometric imbedding [see §1 in this paper]. Especially giving an explicit representation of the diastatic function of a simply connected complete Kaehler manifold with constant holomorphic sectional curvature, he found a necessary and sufficient condition on a Kaehler manifold M in order that a holomorphic isometric imbedding of M into this space exists. And then he proved the rigidity theorem for such an imbedding.

We shall give here an explicit representation of the diastatic function of $Q_m(C)$. By making use of this function, we shall make a special coordinate system in $Q_m(C)$ around each point [§2]. These representation and coordinate system are the core of this paper [§3 and §4].

The complex quadric $Q_m(C)$ is a complex hypersurface in the projective space $P_{m+1}(C)$ defined by

$$(z^{0})^{2} + (z^{1})^{2} + \dots + (z^{m+1})^{2} = 0$$

with respect to the homogeneous coordinate system (z^0, \dots, z^{m+1}) of $P_{m+1}(C)$. As a Kaehler metric on $Q_m(C)$, we take the metric induced from that on $P_{m+1}(C)$, which is the Fubini-Study metric with constant holomorphic sectional curvature 4. The complex quadric $Q_m(C)$ has the group of holomorphic isometric transformations, which acts on $Q_m(C)$ transitively.

We shall show that $P_n(C)$ is holomorphically and isometrically imbedded into $Q_l(C)$ only for $l \ge 2n$ [§3, Ex. 3 and Th. 1]. This implies that, for a Kaehler manifold M, the existence problem of a holomorphic isometric imbedding of M into $Q_m(C)$ is equivalent to that of such an imbedding into $P_n(C)$.

Partially supported by Grant-in-Aid for Scientific Research.