Nagura, T. Osaka J. Math. 19 (1982), 241-281

ON THE JACOBI DIFFERENTIAL OPERATORS ASSOCIATED TO MINIMAL ISOMETRIC IMMERSIONS OF SYMMETRIC SPACES INTO SPHERES III

TOSHINOBU NAGURA

(Received April 21, 1980)

Contents

Intro	oduction	.241
10.	Minimal immersions of $(2h-1)$ -dimensional sphere	
	$S^{2h-1}(h \ge 2)$.241
11.	Minimal immersions of 2 <i>h</i> -dimensional sphere $S^{2h}(h \ge 2)$.264
12.	Minimal immersions of 2-dimensional sphere S^2	.274

Introduction

This is a continuation of our first and second papers [5]. In this paper we shall study on the spectra of the Jacobi differential operator \tilde{S} for minimally immersed spheres into spheres.

Computing the matrix expressions of the linear mappings S_{σ} , defined in subsection 5.2 of our first paper [5], we show that every eigenvalue of the Jacobi differential operator \tilde{S} is an algebraic number (Theorem 10.4.4, 11.4.4 and 12.3.3), however not a rational number in general. This suggests us that \tilde{S} will not be described only by Casimir operators. We give a lower bound for the nullity of \tilde{S} (Theorem 10.6.2 and 11.6.2). In particular, for the minimally immersed 2-dimensional sphere S^2 , the nullity is explicitly computed (Theorem 12.4.1) and we show that the nullity is equal to twice the Killing nullity (Theorem 12.4.3).

We shall denote by [I] (resp. by [II]) our first paper [5] (resp. our second paper [5]) for short. We retain the definitions and notation in [I] and [II].

The author would like to express his sincere gratitude to Professor M. Takeuchi and Professor S. Murakami for their valuable suggestions and encouragements.

10. Minimal immersions of (2h-1)-dimensional sphere $S^{2h-1}(h \ge 2)$

In this section we assume that G=SO(2h) and K=SO(2h-1), $h\geq 2$. The assumptions and the notation are the same as in section 9 of [II]. And in this paper, we will not distinguish G-modules and representations of G.