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REMARKS ON ONE-DIMENSIONAL SEMINORMAL RINGS
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Various characterizations of reduced seminormal rings of dimension one
are given in Salmon [4], Bombieri[1] and Davis[2]. Among others it is shown
that if (4, m) is a local ring of a closed point on an algebraic curve defined over
an algebraically closed field %, then A is seminormal if and only if the comple-
tion A is k-isomorphic to R[[X, -+, X,]1/(+++, X;X;, ---) where i % ([1]) or the
associated graded ring G7r'(A4) is k-isomorphic to R[X,, -+, X,]/(--+, X, X}, )
where 727 ([2]). Generalizing these results we prove the following in the first
section. Under certain moderate assumptions on A there exist an integer # and
an ideal I in R[X], --+, X,] such that 4 is seminormal if and only if flzk[[Xl, ey
X IR[[ X, «-+, X,]] or Gri(A)=<k[X,, -+, X,]/I. Moreover the ideal [ is gene-
rated by quadratic forms and these forms and integer z are determined solely by
the k-algebra structure of A/J(A4), where 4 is the integral closure of 4 in the
total quotient ring of 4 and J(A) is the Jacobson radical of 4. Let C be a plane
algebraic curve and let P be a closed point on C. Then it is known that the
local ring Op ( is seminormal if and only if P is a simple point or a node (cf. [1],
[2], [4]). It is then natural to ask what the seminormalization of Op ¢ is when
P is not a seminormal point. The answer to this question is given in the second
section in the case where P is an ordinary multiple point.
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0. Notations and conventions

The following notations and conventions are fixed throughout this article.
When R is a ring, J(R) stands for the Jacobson radical of R, O(R) for the total
quotient ring of R, R for the integral closure of R in Q(R) and *R for the seminor-
malization of R. We denote by =, an R-algebra isomorphism. An R-algebra
is always assumed to be commutative, associative and containing 1. The sym-
bols X,Y, Z, T, X,, etc. are used to denote indeterminates or variables. When
we say that (R, IR) is a quasi-local ring, we mean that R is a ring which has the
unique maximal ideal M. A noetherian quasi-local ring is called a local ring.



